
Maximum kT in initial state radiation

Consider the underlying Born kinematics x̄1, x̄2, sb, where sb is the s invariant of the underlying
Born. We work in the underlying Born rest frame, where

P1x̄1 = P2x̄2, sb =(P1x̄1 + P2x̄2)
2 = 4P1x̄1 P2x̄2 . (1)

In the ISR configuration, the final state system with squared mass sb acquires a transverse
momentum kT , and a massless parton is radiated with transverse momentum kT . Energy
momentum balance requires that
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kL = x1P1− x2P2 . (3)

We solve these conditions as follows:
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so we must require

x1P1 + x2P2− sb + kT
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> 0, (5)

then we can square to get (setting mT = sb + kT
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that, using eq. 3 yields
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Defining y1 = x1/x̄1, y2 = x2/x̄2, we get
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The constraint in these variables yields
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which immediately yields
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> 2 . (10)

A further constraint on y arises because mT/ sb

√
> 1. This yields
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> 0� (1− y1)(1− y2)> 0. (11)

that together with eq. 10 implies that both y1 and y2 must be larger than 1. Furthermore
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thus mT has positive derivatives with respect to y1 and y2, which means that its maximum is
where both y1 and y2 reach thei maxima, respectively 1/x̄1 and 1/x̄2. Thus
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