Lattice QCD with light quarks

compares to chiral perturbation theory

Leonardo Giusti

CERN - Theory Group

In Collaboration with L. Del Debbio (Edinburgh), M. Lüscher (CERN), R. Petronzio and N. Tantalo (Tor Vergata)

- QCD with two flavors with Wilson fermions
- ChPT with two flavors
- A new algorithm for full QCD simulations: SAP
- Simulation parameters and costs
- Results for meson masses and decay constants
- Scaling of M_P^2 and F_P with the lattice spacing
- Lattice results confront ChPT
- Conclusions

QCD with two degenerate flavors with the Wilson action

■ The Wilson action for the SU(3) Yang–Mills theory is $(\beta = 6/g^2)$

$$S_{\rm YM} = \beta \sum_{x,\mu < \nu} \left\{ 1 - \frac{1}{6} \operatorname{Tr} \left[U_{\mu\nu}(x) + U^{\dagger}_{\mu\nu}(x) \right] \right\}$$

$$U_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+\mu)U_{\mu}^{\dagger}(x+\nu)U_{\nu}^{\dagger}(x)$$

Periodic boundary conditions for gauge fields

The fermion Wilson action we use is

$$S_{\rm F} = \sum_{i=1}^{2} \sum_{x,y} \bar{\psi}_i(x) D_m(x,y) \psi_i(y) \qquad \qquad \psi \equiv \{\psi_1, \psi_2\}$$

$$D_m = \frac{1}{2} \Big\{ \gamma_\mu (\nabla^*_\mu + \nabla_\mu) - a \nabla^*_\mu \nabla_\mu \Big\} + m_0$$

where $am_0 = (1/k - 8)/2$ and

$$\nabla_{\mu}\psi_{i}(x) = \frac{1}{a} \Big[U_{\mu}(x)\psi_{i}(x+a\hat{\mu}) - \psi_{i}(x) \Big]$$

$$\nabla^{*}_{\mu}\psi_{i}(x) = \frac{1}{a} \Big[\psi_{i}(x) - U^{\dagger}_{\mu}(x-a\hat{\mu})\psi_{i}(x-a\hat{\mu}) \Big]$$

Fermion fields with periodic boundary conditions in space and anti-periodic in time

It is possible to define renormalized operators

$$\hat{A}^{a}_{\mu}(x) = Z_{A}A^{a}_{\mu}(x) \qquad A^{a}_{\mu}(x) = \bar{\psi}(x)\gamma_{\mu}\gamma_{5}\frac{\sigma^{a}}{2}\psi(x)$$
$$\hat{P}^{a}(x) = Z_{P}P^{a}(x) \qquad P^{a}(x) = \bar{\psi}(x)\gamma_{5}\frac{\sigma^{a}}{2}\psi(x)$$

that satisfy renormalized axial Ward identities of the form

$$\partial^*_{\mu} \langle \hat{A}^a_{\mu}(x) \hat{P}^a(0) \rangle = 2 \,\hat{m} \, \langle \hat{P}^a(x) \hat{P}^a(0) \rangle + \mathcal{O}(a) \qquad x \neq 0$$

The "on-shell" non-perturbative definition of the quark mass is

$$m = \frac{1}{2} \frac{\partial^*_{\mu} \langle A^a_{\mu}(x) P^a(0) \rangle}{\langle P^a(x) P^a(0) \rangle} \qquad \qquad \hat{m} = \frac{Z_A}{Z_P} m$$

The fundamental fields

$$U \equiv \exp\left\{\frac{2i}{F}\Phi\right\}, \qquad \Phi = \sum_{a} \phi^{a} \frac{\sigma^{a}}{2}$$

transforms under chiral symmetry as

$$U \to V_R U V_L^{\dagger} , \qquad \qquad U^{\dagger} \to V_L U^{\dagger} V_R^{\dagger}$$

with
$$V_L V_L^{\dagger} = I$$
 and $V_R V_R^{\dagger} = I$

 ${\ensuremath{{\rm J}}}$ The $\mathcal{O}(p^2)$ Euclidean action which encodes the SSB is

$$\mathcal{S}^{(2)} = \int d^4x \frac{F^2}{4} \left\{ \operatorname{Tr} \left[\partial_{\mu} U^{\dagger} \partial_{\mu} U \right] - M^2 \operatorname{Tr} \left[U^{\dagger} + U \right] \right\}$$

where $M^2 = 2B\hat{m}$

 ${\ensuremath{{\,{\rm J}}}}$ The ${\ensuremath{\mathcal{O}}}(p^4)$ Euclidean Action is given by

$$\mathcal{S}^{(4)} = \int d^4x \Big\{ \frac{M^4(\hat{l}_4 - \hat{l}_3)}{16} \operatorname{Tr} [U^{\dagger} + U] \operatorname{Tr} [U^{\dagger} + U] + \frac{M^2 \hat{l}_4}{8} \operatorname{Tr} [\partial_{\mu} U^{\dagger} \partial_{\mu} U] \operatorname{Tr} [U^{\dagger} + U] + \text{four deriv. terms} \Big\}$$

 ${\ensuremath{{\,{\rm S}}}}$ The meson mass and decay constant at ${\ensuremath{\mathcal{O}}}(p^4)$ are given by

$$M_P^2 = M^2 \left\{ 1 + \frac{M^2}{32\pi^2 F^2} \log\left(\frac{M^2}{\mu^2}\right) + \frac{2M^2}{F^2} \hat{l}_3(\mu) \right\}$$
$$F_P = F \left\{ 1 - \frac{M^2}{16\pi^2 F^2} \log\left(\frac{M^2}{\mu^2}\right) + \frac{M^2}{F^2} \hat{l}_4(\mu) \right\}$$

Matching a non-linear sigma model with the experiment: M_P^2 Gasser Leutwyler 84

If we define

$$\hat{l}_{3}(\mu) = \frac{-1}{64\pi^{2}} \left(\bar{l}_{3} + \log\left(\frac{M^{2}}{\mu^{2}}\right) \right) \Big|_{M=139.6 \,\mathrm{MeV}}$$
$$\bar{l}_{3} = \log\left(\frac{\Lambda_{\pi}^{2}}{M^{2}}\right) \Big|_{M=139.6 \,\mathrm{MeV}}$$

then

$$M_P^2 = M^2 \left\{ 1 + \frac{M^2}{32\pi^2 F^2} \log\left(\frac{M^2}{\Lambda_{\pi}^2}\right) \right\}$$

A crude estimate from experimental values of meson masses gives

$$\bar{l}_3 = 2.9 \pm 2.4$$

Matching a non-linear sigma model with the experiment: F_P Gasser Leutwyler 84, Colangelo Gasser Leutwyler 01

If we define

$$\hat{l}_{4}(\mu) = \frac{1}{16\pi^{2}} \left(\bar{l}_{4} + \log\left(\frac{M^{2}}{\mu^{2}}\right) \right) \Big|_{M=139.6 \,\mathrm{MeV}}$$
$$\bar{l}_{4} = \log\left(\frac{\Lambda_{F}^{2}}{M^{2}}\right) \Big|_{M=139.6 \,\mathrm{MeV}}$$

then

$$F_P = F\left\{1 - \frac{M^2}{16\pi^2 F^2}\log\left(\frac{M^2}{\Lambda_F^2}\right)\right\}$$

An estimate from the scalar radius of the pion gives

$$\bar{l}_4 = 4.4 \pm 0.2$$

● Decomposition of the lattice into blocks with Dirichlet b.c. with $q \ge \pi/L > 1$ GeV

■ Asymptotic freedom: quarks are weakly interacting in the blocks \implies QCD easy (*cheaper*) to simulate

Block interactions are weak and are taken into account exactly

$$S(x,y) \sim \frac{1}{|x-y|^3}$$

0 0 0

The Wilson–Dirac operator

$$D_m = \frac{1}{2} \left\{ \gamma_\mu (\nabla^*_\mu + \nabla_\mu) - \nabla^*_\mu \nabla_\mu \right\} + m_0$$

can be decomposed as

$$D = D_{\Omega^*} + D_{\Omega} + D_{\partial\Omega^*} + D_{\partial\Omega}$$

where

$$D_{\Omega^*} = \sum_{\text{white } \Lambda} D_{\Lambda} \qquad \qquad D_{\Omega} = \sum_{\text{black } \Lambda} D_{\Lambda}$$

 Ω^* , Ω are white and black blocks, $\partial\Omega$, $\partial\Omega^*$ are exterior boundaries

С	0	0	0	0	0	0	0	0	0	0	0
С	•	•	•	•	0	0	•	٠	٠	٠	0
С	•	•	•	•	0	0	٠	٠	٠	٠	0
С	•	•	•	•	0	0	٠	٠	•	•	0
С	•	•	•	•	0	0	٠	•	•	•	0
С	0	0	0	0	0	0	0	0	0	0	0
c	0	0	0	0	0	0	0	0	0	0	0
С	•	•	•	٠	0	0	•	•	•	•	0
С	•	•	•	٠	0	0	•	•	•	•	0
С	•	•	•	•	0	0	•	•	•	•	0
С	•	•	•	•	0	0	•	•	•	•	0
2	0	0	0	0	0	0	0	0	0	0	0
С	0	0	0	0	0	0	0	0	0	0	0
С	•	•	•	•	0	0	•	٠	٠	٠	0
С	•	•	•	•	0	0	•	٠	٠	٠	0
С	•	•	•	•	0	0	٠	٠	٠	٠	0
С	•	•	•	•	0	0	٠	٠	•	٠	0
С	0	0	0	0	0	0	0	0	0	0	0
С	0	0	0	0	0	0	0	0	0	0	0
С	٠	٠	٠	٠	0	0	•	٠	•	•	0
С	٠	٠	٠	٠	0	0	٠	٠	•	٠	0
С	٠	•	•	٠	0	0	٠	٠	•	٠	0
С	٠	•	٠	٠	0	0	•	٠	•	•	0
С	0	0	0	0	0	0	0	0	0	0	0

The determinant of the Dirac operator written as

$$\det D_W = \prod_{\text{all}\Lambda} \det \hat{D}_\Lambda \ \det R$$

with the block interaction

$$R = 1 - P_{\partial\Omega^*} D_{\Omega}^{-1} D_{\partial\Omega} D_{\Omega^*}^{-1} D_{\partial\Omega^*}$$

For two flavors can be written as integral over scalar fields

$$S_{\phi\chi} = \sum_{\text{all }\Lambda} ||\hat{D}_{\Lambda}^{-1}\phi_{\Lambda}||^2 + ||R^{-1}\chi||^2$$

where ϕ_{Λ} defined on Λ and χ on $\partial \Omega^{*}$

0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	٠	٠	0	0	•	٠	٠	٠	0
0	•	•	•	•	0	0	٠	٠	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0
0	0	0	0	0	0		0	0	0	0	0
	0	0	0	0	-		0	0	0	0	-
10	0	0	0	0		0	0	0	0	0	0
0	٠	٠	٠	٠	0	0	٠	٠	٠	٠	0
0	٠	٠	٠	٠	0	0	٠	٠	٠	٠	0
0	٠	٠	٠	٠	0	0	٠	٠	•	•	0
0	٠	٠	٠	٠	0	0	٠	•	•	•	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	•	•	0	0	•	•	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0
					0						0
ľ	•		•			ľ	•	•	•	•	Ŭ
0	•	•	•	•	0	0	•	•	٠	•	0
0	0	0	0	0	0	0	0	0	0	0	0
			-				0	0	0	0	0
0	0	0	0	0	9	1×	<u> </u>	0	0	0	9
0	•	•	•	•	0	0	•	•	•	•	0
0	•	•	•	•	0	0 0	•	•	•	•	0
0	•	•	•	•	0 0 0 0	0 0 0	•	•	•	•	0 0 0
0 0 0 0	0 • • •	• • •	•	•	0 0 0 0	0 0 0 0	•	•	•	•	0 0 0 0

Schwarz-preconditioned Hybrid Monte Carlo (SAP) Lüscher 03 04

i.e. the most expensive force computed less often!

Do not give up first-principles: teach Physics to exact algorithms for being smarter (faster)!

$$C_{\rm ost} \propto m_q^{-1}$$

Collaboration: L. Del Debbio (Edinburgh), L. G. and M. Lüscher (CERN), R. Petronzio and N. Tantalo (Tor Vergata)

Fermi Institute PC cluster with 80 nodes (160 Xeon procs) 64 nodes used for this project (\sim 200 Gflops sustained)

Bern Physics Institute PC cluster with 32 nodes (64 Xeon procs) 8 nodes used for this project (~25 Gflops sustained)

CERN PC cluster with 32 nodes (64 Xeon procs) All nodes used for this project (~160 Gflops sustained)

	k	$\mathrm{N}_{\mathrm{trj}}$	N_{sep}	N_{conf}
	0.15750	6400	100	64
$V = 24^3 \times 32$	0.15800	10900	100	109
$\beta = 5.6$	0.15825	10000	100	100
	0.15835	5000	50	100
	0.15410	5000	50	100
$V = 32^3 \times 64$	0.15440	5050	50	101
$\beta = 5.8$	0.15455	5200	50	104
	0.15462	5100	50	102

- 3. $L \sim 1.75 \text{ fm}$
- All confs archived @ CERNAll following results preliminary!

Accepted gauge field configurations generated per day L. Giusti – Ringberg April 2006 – p. 15/28

	k	aM_P
	0.15750	0.2744(21)
$V = 24^3 \times 32$	0.15800	0.1969(16)
$\beta = 5.6$	0.15825	0.1554(31)
$t_1 - t_2 = 12 - 16$	0.15835	0.1204(44)
	0.15410	0.1965(8)
$V = 32^3 \times 64$	0.15440	0.1481(11)
$\beta = 5.8$	0.15455	0.1151(12)
$t_1 - t_2 = 18 - 32$	0.15462	0.1040(12)

k=0.15835 0 0.25 • 0.2 $\mathbf{M}_{\mathbf{P}}^{\mathrm{eff}}(t)$ • 0.1 0.05 0 L 0 5 10 15 20 t

24³*32 beta=5.6

Pseudoscalar meson mass extracted from

$$C_{PP}(t) = \sum_{\vec{x}} \langle P^a(x) P^a(0) \rangle$$

by fitting the effective mass to a plateaux

	k	aM_P
	0.15750	0.2744(21)
$V = 24^3 \times 32$	0.15800	0.1969(16)
$\beta = 5.6$	0.15825	0.1554(31)
$t_1 - t_2 = 12 - 16$	0.15835	0.1204(44)
	0.15410	0.1965(8)
$V = 32^3 \times 64$	0.15440	0.1481(11)
$\beta = 5.8$	0.15455	0.1151(12)
$t_1 - t_2 = 18 - 32$	0.15462	0.1040(12)

Pseudoscalar meson mass extracted from

$$C_{PP}(t) = \sum_{\vec{x}} \langle P^a(x) P^a(0) \rangle$$

by fitting the effective mass to a plateaux

	k	aF_P
	0.15750	0.0648(8)
$V = 24^3 \times 32$	0.15800	0.0544(9)
$\beta = 5.6$	0.15825	0.0500(17)
$t_1 - t_2 = 13 - 16$	0.15835	0.0461(23)
	0.15410	0.0457(4)
$V = 32^3 \times 64$	0.15440	0.0379(4)
$\beta = 5.8$	0.15455	0.0347(4)
$t_1 - t_2 = 18 - 32$	0.15462	0.0339(6)

Pseudoscalar decay constant extracted by combining $C_{PP}(t)$ with

$$C_{AP}(t) = \sum_{\vec{x}} \langle A_0^a(x) P^a(0) \rangle$$

and by fitting the effective decay constant to a plateaux

	k	aF_P
	0.15750	0.0648(8)
$V = 24^3 \times 32$	0.15800	0.0544(9)
$\beta = 5.6$	0.15825	0.0500(17)
$t_1 - t_2 = 13 - 16$	0.15835	0.0461(23)
	0.15410	0.0457(4)
$V = 32^3 \times 64$	0.15440	0.0379(4)
$\beta = 5.8$	0.15455	0.0347(4)
$t_1 - t_2 = 18 - 32$	0.15462	0.0339(6)

Pseudoscalar decay constant extracted by combining $C_{PP}(t)$ with

$$C_{AP}(t) = \sum_{\vec{x}} \langle A_0^a(x) P^a(0) \rangle$$

and by fitting the effective decay constant to a plateaux

Quark mass

	k	2am
	0.15750	0.05477(53)
$V = 24^3 \times 32$	0.15800	0.02853(31)
$\beta = 5.6$	0.15825	0.01724(42)
$t_1 - t_2 = 8 - 16$	0.15835	0.01107(44)
	0.15410	0.03898(16)
$V = 32^3 \times 64$	0.15440	0.02170(11)
$\beta = 5.8$	0.15455	0.01417(12)
$t_1 - t_2 = 7 - 32$	0.15462	0.01139(16)

$$2m(t) = \frac{\partial_t^* C_{AP}(t)}{C_{PP}(t)}$$

by fitting to a plateaux

Quark mass

	k	2am
	0.15750	0.05477(53)
$V = 24^3 \times 32$	0.15800	0.02853(31)
$\beta = 5.6$	0.15825	0.01724(42)
$t_1 - t_2 = 8 - 16$	0.15835	0.01107(44)
	0.15410	0.03898(16)
$V = 32^3 \times 64$	0.15440	0.02170(11)
$\beta = 5.8$	0.15455	0.01417(12)
$t_1 - t_2 = 7 - 32$	0.15462	0.01139(16)

Quark mass extracted from

$$2m(t) = \frac{\partial_t^* C_{AP}(t)}{C_{PP}(t)}$$

by fitting to a plateaux

Two-point pseudoscalar correlation functions computed for 5 sources

_	k	2am	aM_P	aF_P
	0.15750	0.05477(53) <mark>[58][71]</mark>	0.2744(21)[27][31]	0.0648(8)[11][14]
$V = 24^3 \times 32$	0.15800	0.02853(31)[41][47]	0.1969(16)[19][29]	0.0544(9) <mark>[12][18]</mark>
$\beta = 5.6$	0.15825	0.01724(42)[49][55]	0.1554(31) <mark>[38][33]</mark>	0.0500(17) <mark>[23][30]</mark>
	0.15835	0.01107(44) <mark>[53][52]</mark>	0.1204(44) <mark>[49][66]</mark>	0.0461(23) <mark>[28][31]</mark>
	0.15410	0.03898(16)[18][19]	0.1965(8) [9][13]	0.0457(4) <mark>[6][8]</mark>
$V = 32^3 \times 64$	0.15440	0.02170(11) <mark>[13][15]</mark>	0.1481(11) <mark>[12][14]</mark>	0.0379(4) <mark>[5][8]</mark>
$\beta = 5.8$	0.15455	0.01417(12) <mark>[13][14]</mark>	0.1151(12) <mark>[14][15]</mark>	0.0347(4) <mark>[6][8]</mark>
	0.15462	0.01139(16) <mark>[16][19]</mark>	0.1040(12)[<mark>13][16]</mark>	0.0339(6) <mark>[8][10]</mark>

A general error reduction observed

 \blacksquare A clear pattern of error reduction in F_P

	k	2am	$a^2 M_P^2$	aF_P
	0.15750	0.05477(53)	0.0753(11)	0.0648(8)
$V = 24^3 \times 32$	0.15800	0.02853(31)	0.0388(6)	0.0544(9)
$\beta = 5.6$	0.15825	0.01724(42)	0.0241(10)	0.0500(17)
	0.15835	0.01107(44)	0.0145(11)	0.0461(23)
	0.15410	0.03898(16)	0.0386(3)	0.0457(4)
$V = 32^3 \times 64$	0.15440	0.02170(11)	0.0219(3)	0.0379(4)
$\beta = 5.8$	0.15455	0.01417(12)	0.0132(3)	0.0347(4)
	0.15462	0.01139(16)	0.0108(2)	0.0339(6)

 ${\ensuremath{{\rm S}}}$ Meson masses and decay constants at ${\ensuremath{\mathcal O}}(p^4)$ in finite volume

$$M_P^2 = M^2 \left\{ 1 + \frac{M^2}{32\pi^2 F^2} \log\left(\frac{M^2}{\Lambda_\pi^2}\right) + \frac{1}{2F^2} g_1^4(M^2) \right\}$$
$$F_P = F \left\{ 1 - \frac{M^2}{16\pi^2 F^2} \log\left(\frac{M^2}{\Lambda_F^2}\right) - \frac{1}{F^2} g_1^4(M^2) \right\}$$

 \checkmark The finite volume corrections in M_P^2 for the various masses are

$$\beta = 5.6 \qquad \beta = 5.8 \\ \{0\%, 0.2\%, 0.7\%, 2.1\%\} \qquad \{0\%, 0.6\%, 0.9\%, 1.3\%\}$$

L. Giusti – Ringberg April 2006 – p.20/28

Reference point

Reference point defined to be

$$\left(\frac{M_P}{M_V}\right)^2\Big|_{m=m_{\rm ref}} = \left(\frac{M_K^{\rm exp}}{M_{K^*}^{\rm exp}}\right)^2 = 0.30657$$

 ${\ensuremath{\,{\rm \hspace{-.025cm} I}}}$ If we fix $M_{\rm ref}=M_K^{\rm exp}$ to fix the lattice spacing

$$a^{-1} = 2.70(3) \,\mathrm{GeV} \qquad \beta = 5.6$$

$$a^{-1} = 3.77(4) \,\mathrm{GeV} \qquad \beta = 5.8$$

If we use Z_A from RI-MOM D. Bećirević et al 05

$$F_{\rm ref} = 111(2)$$
 $\beta = 5.6$

$$F_{\rm ref} = 108(2)$$
 $\beta = 5.8$

a m

Pseudoscalar meson mass versus the quark mass

A remarkable linear behavior is observed

Pseudoscalar meson mass versus the quark mass

A remarkable linear behavior is observed

..... and results from the two lattices are consistent

In QCD with two light flavors the mass of the light pseudoscalar meson shows a remarkable linearity in the quark mass

In QCD with two light flavors the mass of the light pseudoscalar meson shows a remarkable linearity in the quark mass

- In QCD with two light flavors the mass of the light pseudoscalar meson shows a remarkable linearity in the quark mass
- The mass dependence is also compatible with the "experimental" curve

Comparison with quenched data

For quenched data thanks to: P. Hernández, C. Pena, J. Wennekers and H. Wittig

L. Giusti – Ringberg April 2006 – p.24/28

In QCD with two light flavors the decay constant of the light pseudoscalar meson shows a clear dependence on the quark mass

In QCD with two light flavors the decay constant of the light pseudoscalar meson shows a clear dependence on the quark mass

..... and results from the two lattices are consistent

- In QCD with two light flavors the decay constant of the light pseudoscalar meson shows a clear dependence on the quark mass
- The mass dependence is also compatible with the "experimental" curve

The lightest three points are compatible with a linear behavior

The lightest three points are compatible with a linear behavior

..... and also with the NLO ChPT fit function

 \blacksquare Light and precise points are needed for an accurate determination of F

First clover run

-

	k	$\mathrm{N}_{\mathrm{trj}}$	N_{sep}	N_{conf}
	0.13550	5200	50	104
$V = 24^3 \times 48$	0.13590	4620	30	154
$\beta = 5.3$	0.13610	5070	30	169
$c_{sw} = 1.90952$	0.13620	1770	30	59
	TBD			

L. Giusti – Ringberg April 2006 – p.27/28

Conclusions

Our experience for two flavor QCD shows that SAP is very stable in the ranges

- 1. $m \sim \frac{1}{4}m_s m_s$
- **2.** $a \sim 0.050 0.075$ fm
- 3. $L \sim 1.75 \text{ fm}$

The production for two Wilson lattices completed. The first clover run is finishing

- Discretization effects in the quark mass dependence of M_P^2 and F_P are small
- The mass dependence of M_P^2 turns out to be very linear for $M_P = 300 600$ MeV Data compatible with NLO ChPT + exp.
- \blacksquare F_P shows a clear quark mass dependence. Data compatible with NLO ChPT + exp.
- Precise points at light quark masses are necessary to extract the LECs reliably