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Thermal field theories in the Euclidean path integral formalism

® From textbooks d(z) = ¢(x + Vopem) m € 74
~ Lo 0 0 O
_ —LoH
Z(L())_Tr{e } vo_| 0oLio 0
PP 0 0 Ly 0
_ O 0 O Ls
where the temperature is 7' = 1/Lg
® The basic thermodynamic quantities are defined as
1 1 0 Lz 0 (1
f=——1InZ(Ly) e=-——1InZ(Ly) s=—=0 { an(LO)}
LoV V 0Ly V O0Lg \ Lg
which in the thermodynamic limit lead to
f Lo(e + p) Lo-2
= — S = (& Cy = — —S
p 0 p 0 By
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Path integrals with shifted boundary conditions: infinite-volume limit (I)

® We are interested in the partition function
$(x) = p(z+Vapem) m € L4

Z(Lo, &) = Tr {e—%(ﬁ—i&'ﬁ)} Lo 0 0 0
Lot Ly 0 O
Loé2 0 Lz O
Lo&s 0 0 Ls
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Path integrals with shifted boundary conditions: infinite-volume limit (I)

® We are interested in the partition function
$(x) = p(z+Vapem) m € L4

Z(Lo, &) = Tr {e—Lo(ﬁ—iﬁlﬁﬂ} Lo 0 0 0

Ve _ Lo&y L1 0 O

sbe 0 0 Ly O

where we have chosen & = {£1,0,0} 0O 0 0 Ls
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Path integrals with shifted boundary conditions: infinite-volume limit (I)

® We are interested in the partition function
¢(z) = p(x+Vipern) m € Z*

Z(Lo, &) = Tr {e—Lo(ﬁ—iﬁlﬁﬂ} Lo 0 0 0

v | Lo Li 0 0

sbe ™ 0 0 Ly O

where we have chosen & = {£1,0,0} 0O 0 0 Ls

#® By making an Euclidean "boost” rotation

. y1 & 0 0

Ny = A— —71§1 v 0 0
\/ 14 &3 0 0 10

0 0O 01
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Path integrals with shifted boundary conditions: infinite-volume limit (I)

® We are interested in the partition function
d(x) = p(x+Vipem) m € /e

Z(Lo, &) = Tr {e—Lo(ﬁ—iﬁlﬁﬂ} Lo 0 0 0

v _ | Lo Ly 0 0

sbe ™ 0 0 Ly O

where we have chosen & = {£1,0,0} 0O 0 0 Ls

#® By making an Euclidean "boost” rotation

. y1 76 0 0

Ny = A— —71§1 71 0 0
J1+ €2 0 0 10

0 0O O 1

Lorentz [SO(4)] invariance implies

Lo/v1 Limi& 0 0

_ el B 0 Livi 0 O
Z(L07€) - TI'{G Llfh(H_HJ&lPO)} S/bC:A‘/SbC: 0 0 Ly O
0 0 0 Ls
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Path integrals with shifted boundary conditions: infinite-volume limit (II)

® Assuming that H has a translationally-invariant

vacuum and a mass gap [§ = {£1,0,0}]
Lo/vi Limé& 0 0

H+i€1 P 0 Livi 0 O
Z(Lo’g):Tr{e_ml(HHglPO)} sbe =AVape = 0 0 Ly 0

0 0 0 L3

the right hand side becomes insensitive to the
phase in the limit L1 — oo at fixed &;

Lo/y1 0 0 O

. 1 L 0O O

Loy/1+ 2)2— lim —— In Z (Lo, "o 0 171
f( 0 51 V—oo LoV ( 0 €) sbc — 0 0 Ly 0
0 0 0 L3

® Thanks to cubic symmetry (infinite volume)

f(Lo,€) = f(Loy/1+€%,0) b(z0,a) = d(z0+Lo, 2+Lok)

for a generic shift &
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Thermal field theory in a moving frame

® |f H and P are the Hamiltonian and the total momentum operator expressed in a
moving frame, the standard partition function is

Z(Lo,v) =Tr {e_LO (ﬁ_”'ﬁ)}
® If we continue Z to imaginary velocities v = i€
Z(Lo, &) = Tr {e~Lo—i&-P)y

#® The functional dependence f(Lo+/1 + £2) is consistent with modern thermodynamic
arguments on the Lorentz transformation of the temperature and the free-energy

[Ott 63; Arzelies 65; see Przanowski 11 for a recent discussion]

#® In the zero-temperature limit the invariance of the theory (and of its vacuum) under
the Poincaré group forces its free energy to be independent of the shift £

® At non-zero temperature the finite length Lo breaks SO(4) softly, and the free energy
depends on the shift (velocity) but only through the combination 8 = Lo+/1 + &2
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Euclidean Ward identities for correlators of T,

® At £ = 0 the dependence of f from the combination Lo+/1 + £2 in turn implies

Lo (To1To1)e = {(Too) — (T11)

L3{(To1To1 To1 To1)e = 9(T11) — 9 (Too) + 3 Lo (T'00T00)c

where <T()0> = —e, <T11> = p, ﬁl — —iTOl and

Tyu(a0) = [ d% Ty (a)

® Note that:
« All operators at non-zero distance
« Number of EMT on the two sides different

* On the lattice they can be imposed to fix the renormalization of 7},,

L. Giusti — Origin of Mass 2015 - Odense May 2015 - p. 7/23



Ward identities at non-zero shift

® When £ # 0 odd derivatives in the &£, do not vanish anymore, and new interesting
WiIs hold. The first non-trivial one is

® By deriving twice with respect to the &

L — i &5
(Tok)e = 02& Z (Toi T0j>.g,c {5@' — —igj]
%]

® Note that also in this case:
« All operators at non-zero distance
+x Number or components of EMT on the two sides different

+ On the lattice they can be imposed to fix the renormalization of 7},,,
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Entropy density from the response to the shift

® The Entropy density can be computed as

213/2
SZ—LO(1+€ ) (Tok) ¢
k

or as

213/2
s:—(l—i_€ ) lim lian(Lo,ﬁ)
&k V—oo V 08y

® With respect to the standard technique:

« No ultraviolet power divergent subtraction
(zero temperature subtraction)

x On the lattice finite multiplicative renormalization
constant fixed non-perturbatively by Wis
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Path integrals with shifted boundary conditions: finite-size effects

® The leading finite-size contributions to the free energy are

f(Vsbc)—f(LO\/l—l—52) =T1+ Ty +Zs+ -

where for L, = L

v 1d [G_MLT]
r

- 2w Lo L3 rdr

1

= i ki

8 _

with M and v being the mass and the multiplicity of the lightest screening state

® Analogous formula for the entropy by noticing that

(Tok) v — (Tok)e = — 5~ ZZ; + ...

® WiIs can be derived analogously in finite volume. They are modified by terms which
vanish exponentially in the thermodynamic limit

L. Giusti — Origin of Mass 2015 - Odense May 2015 - p. 10/23



Lattice gauge theory [wilson 74]

® A Yang-Mills theory can be defined on a
discretized space-time so that gauge ¢
invariance is preserved

L
® The the gauge field U,, € SU(3) resides on ¢
links

® The Wilson action is

B 1 y
SelUl=5 >3 [1— gReTr{U,W(m)}} rtvl o e
T U,V

Ul(x) Y A

where 8 = 6/g3 and the plaquette is
. s .
. + . ¥ x T+

Uy (@) = Upn(@) Uy (@ + ) Uf (2 + 9) U} () U,(2)

® Discrete shifts in the boundary conditions can
be implemented straightforwardly
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Non-perturbative renormalization of 7,

® On the lattice the Poincaré group is broken down to a discrete group and standard
discretizations of T},,, acquire finite ultraviolet renormalizations

® We focus on the SU(3) Yang—Mills. The analysis applies to other theories as well

., = 4o

{7

pr + z

s [T — (T2

>0}}~

Tl =1 - 5W)gi2{FgaFga}
0
T = 5, - Fo, Fo
pv pv 492 aB” af
Opuv 2{FﬁaFﬁa - FaﬁFocaB}
{|Qw@ - Quu@)|T*},  Quu(@) =3 %
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The sextet renormalization constant Z

#® The continuum relation S AR R
Ve Q/tLO->o E
1 1 8 16 |—- 1loop PT A
- &
(Tok)e = — lim — —1InZ (Lo, &) 15F S -
LO V—ooo V 8£k . Laf- -
T1.3; P ’:i
) ) ) 12f ﬂ'jpj ””””””” E
can be imposed on the lattice to fix Z nt /——"“’_K!:f:“fi/’
e ;
A 1 : :
ZT (98) - — f 1 0.907””0‘1””0‘2‘H‘(‘)?‘:‘“(‘)4‘1“‘0‘.5‘2”‘0‘6‘“‘0‘7‘”‘0‘8””0‘9””i
ALk (Tiy, "

where the derivative in the shift is discretized by the symmetric finite difference

Af _ 1 [Z(L0,€ — ai%/Lo>]
A&, 2aV o LZ(Lo, &+ ak/Lo)
® The final results for Z . (gg) are well represented by

1 — 0.4457 g3

— 0.2543 g& 4+ 0.4357 g — 0.5221 ¢3
1 —0.7165 g2 70 90 90

Zr (gg) —
with the error that varies from 0.4% up 0.7% in the range 0 < g2 < 1

L. Giusti — Origin of Mass 2015 - Odense May 2015 - p. 13/23



The sextet renormalization constant Z

® The continuum relation S A AR
Ve gltLO->O E
1 1 8 16 |—- 1loop PT A
: e
(Tok)e = — lim — —1InZ (Lo, &) 15F e
LO V—ooo V 8£k . Laf- ]
T1.3; P ’5
) ) ) 12f M.pﬂ"‘f,,—— ””” E
can be imposed on the lattice to fix Z b /!,:’;'f‘ﬁ—” ]
1;—"“ A
A 1 g :
ZT (98) - — f 1 0.90””0‘1”HO‘Z‘“‘(‘)3‘”‘(‘)4‘1”‘0‘.5‘2”‘0‘6‘“‘0‘7“”0‘8””0‘9”‘Hl_
A&k (T3, o

where the derivative in the shift is discretized by the symmetric finite difference

Af _ 1, [Z(Lo, £ - al%/Lo>]

- = n —
A&, 2aV Z(Lo,& 4+ ak/Lo)

#® Within statistical errors, the non-perturbative determination starts to deviate

significantly from the one-loop result [Caracciolo et al. 88, 90]

Z.(93) = 1+ 0.27076 g}

already at g3 ~ 0.25
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The triplet renormalization constant z.,

® The continuum relation A
1.02; f
_ Sk | ;
(Tor)e = 7 & {{Too)e — (Tkr)e } T ;
k Zro.gsi— ‘;~~_§§‘~~:
096 ¢ ]
is enforced on the lattice to determine z.. e $
0_92:, Y aI/LOZO ]
— 1lloop PT .
o 1-— £? <T£1k]>£ °'goo_lo.z0_30_40.520.60.70.80_91
T (90) — f (3] [3] %
ko (Tog e — (T e
. . L‘skz L
with the condition To(1+eD) — q €7
® The results for z. (g2) are well represented by
1 — 0.5090 g3
2 0
z =
r(90) = 770 1789 42

where the error grows linearly from 0.15% to 0.75% in the interval 0 < g2 < 1
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The triplet renormalization constant z.,

® The continuum relation Loaf” ]
1.02; a
_ Sk gm T e ]
(Tok)e = e {(Too)e — (Trr)e } e ]
k Zro.gs; ‘;~~_§§‘~~E
0.96- ® ]
is enforced on the lattice to determine z.. oo *
osol| ® aI/Lozo ]
— 1lloop PT ]
o 1— 5}3 <T<£1k]>£ 0'950_10_20_30_40.520.60_70.80_91
#r(90) = =% 3 3 N
ke (Too e — (Typle
with the condition —L285__ — ¢ € 7

Lo(1+£3)
#® Within statistical errors, the non-perturbative determination starts to deviate
significantly from the one-loop result [Caracciolo et al. 88, 90]

2. (g98) = 1 — 0.03008 g2

already at g3 ~ 0.4
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Computation of the entropy density

® Once Zr has been determined, the entropy density can be computed as (£ # 0)

 ZrLo(1+£2)3/?
€k

thanks to the misalignment of the lattice axes with respect to the periodic directions

(Toi)e

S —

® A step-scaling function for s(7') /T can be defined as

o = L SUT) (€)% G (T e

P s(T) T (14D &l

where the step is given by » = /1 4+ ¢2/+/1 + &2

® The entropy density at a given T' can be obtained by solving the recursive relation

B s(To)

Vo = T3 , V41 — ES (Tk,?")’l)k ’ Tk’ — /r'k:TO
0

® The step-scaling function does not require any ultraviolet renormalization factor,
and it has a universal continuum limit
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Computation of the entropy density

® Once Zr has been determined, the entropy density can be computed as (£ # 0)

 ZrLo(1+£2)3/?
€k

thanks to the misalignment of the lattice axes with respect to the periodic directions

(Toi)e

S —

® In practice we consider the step-scaling function

1 (To) )(1,0,0)
- [1]

s (T, V2)
8 <T01 >(1,1,1)

® Being T the only relevant scale in the problem (no zero-temperature subtraction
needed), various orders of magnitude in 7' can be spanned this way in the spirit of
the multi-step matching technique [Liischer et al. 93-94]
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Finite-size effects in the entropy density

® The leading finite-size corrections are givenby o, .

A REamas
0.0008 |~ — M2,8=(1.0.0)|
4 000067 T MREMLOL ]
As 45 L 0006 M2 E=(LLD| ]
_ 0 — M3, &=(1,0,0)
- 2 6 {(T()k)Vsbc - <T07€>€} 00004~ M3,E=(1,L0)| ]
SSB 327 Y €k = 0.0002 M3, E=(LLD)| |
o i ]
® The perturbative expression for the lightest 7 0w .
screening mass is [Laine, Vepsalainen 09] 000041 7
-0.0006 |- |
00008 i
2 - ]
g oo bl e e b e L e e L L
M2:2Tg+... ; Mg =30T — + ... 0 5 10 15 20 (E% 30 35 40 45 50
A

® |t is realistic to consider boxes with (LT") > 10 where finite-size effects are negligible.
Thanks to the locality of the observable, the cost of the simulation is volume
independent at fixed statistical error
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Finite-size effects in the entropy density

® The leading finite-size corrections are givenby

_—
0.0008 [ M2 e=100)]

4 0.0006 - — M2.E(LLO) T

As 45 L 0006 7 M2 E=(LLD| ]
=~ 5 60 UToR)Vape — (Tor)e} _ ovomp " weate|

SSB 327 Y €k & 00002 M3, E=(LLD| |

H

® The perturbative expression for the lightest Ely / .
Screening Mass IS [Laine, Vepsalainen 09] -0.0004 | 7
-0.0006 (| | _

00008 _

2 : i

g -0,001““‘“““HH‘HH‘\Hw\wwH\HH\HH\HH\HH
M2:2Tg+... ; Mg =30T — + ... 0 5 10 15 20 (E% 30 35 40 45 50

4

® |t is realistic to consider boxes with (LT") > 10 where finite-size effects are negligible.
Thanks to the locality of the observable, the cost of the simulation is volume
independent at fixed statistical error
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Numerical computation of the step-scaling function (I)

id L/a Lg/a I} TL

® We have considered 10 different values 21 18208 i Ziggg 123
. 2 . .

of the temperature in the range T.—20T'c As 128 5 6.1420 12.8

Ay 128 6 6.2670 10.7

TO B1 80 3 6.0403 13.3

—, 1o, ..., 81p ,8\/§To By 128 4 6.2257 16.0

2 B3 128 5 6.3875 12.8

By 128 6 6.5282 10.7

— ~ o Cy1 80 3 6.2670 13.3

where To = 1/Lmax ~ 1.8027 [Capitani et al. 98] Cy 128 4 6.4822 16.0

Cg 128 5 6.6575 12.8

Cy 128 6 6.7981 10.7

D, 80 3 6.5282 13.3

® For each temperature, 4 values of the lattice Dy 128 4 6.7533 16.0

. h b . | t dt t | t Dg 128 5 6.9183 12.8

spacing have been simulated to extrapolate Dy 128 6 7.0750 10.7
the step-scaling function to the continuum limit

® We have chosen aspect ratios (L7T") > 10. Hy 80 3 7.7039 13.3

. . . . . H, 128 4 7.9489 16.0

dedicated runs. They are negligible within Hy 128 6 8.2982 10.7

statistical errors I; 80 3 8.0060 13.3

I, 128 4 8.2458 16.0

I3 128 5 8.4346 12.8

Iy 128 6 8.5908 10.7
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Numerical computation of the step-scaling function (II)

id L/a Lg/a I} TL

® For the C lattices we fix T' = Ty = 1/ Lmax Ap 80 3 5.8506 13.3
Aoy 128 4 6.0056 16.0
Az 128 5 6.1429 12.8
Ay 128 6 6.2670 10.7
B1 80 3 6.0403 13.3
® In the first four steps the bare coupling By 128 4 6.2257 16.0
. . o Bg 128 5 6.3875 12.8
constant is fixed by requiring that B, 128 6 6.5282 10.7
[Necco, Sommer 01]
Cy1 80 3 6.2670 13.3
Co 128 4 6.4822 16.0
Cg 128 5 6.6575 12.8
Lmax/ro = 0.738(16) C, 128 6 6.7981 10.7
Dy 80 3 6.5282 13.3
Do 128 4 6.7533 16.0
Dg 128 5 6.9183 12.8
D,y 128 6 7.0750 10.7
® From the 4t" step, we interpolate
quadratically in In (L /a) each set of data at
constant (L) and we choose [Capitani et al. 98]
H; 80 3 7.7039 13.3
H, 128 4 7.9489 16.0
L _ Lk _ 9—k/2 Lmax Hs 128 5 8.1405 12.8
aly, a a H, 128 6 8.2982 10.7
I{ 80 3 8.0060 13.3
I, 128 4 8.2458 16.0
I3 128 5 8.4346 12.8
Iy, 128 6 8.5908 10.7
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Extrapolation to the continuum limit of >,

=

1,3:I T T I T T T I T T T I T T T I T T T I T T T I T T T II
1.25F {
128 e g———e——" o -
LIS -
o 11E E
= B . 1
r - —_—r—— — - — [ ] ]
N Josk—— ]
== = — e b . ]
1:————1'::’-:===1-.-__ -
0.95 =
0.9:| L1 | Il Il Il | - | || |

® Discretization effects and statistical errors are at the level of per mille
® A precision of half a percent in the continuum limit is reached

® At fixed statistical error, the cost of the simulation is volume independent thanks to
the locality of the observable
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Step-scaling function in the continuum

1,257 1T T 1 T7 "] "7 "7 "7 "7 " T "1  "T1 " T7T "1 "1 "7

1.15F

(T, 21/2)

1.051 o -

0.95 1~

® Precision at the level of 0.5%
SAtT ~ 15T,, X5 already compatible with the high temperature limit within errors

® Contribution from various orders (blue line) in the perturbative series is oscillating
(see below)
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Entropy density in the continuum

® At the reference temperature Ty the entropy
density is obtained by extrapolating

s 45 (1+€2) Z,(Ty,

SSB 3972 £ T4

)¢

to the continuum limit

s/sSB

0.92

0.88

0.84

0.8

0.76

0.72

0.68

0.64L

R e e e N N B B ey
a o (100 g
n E5(1,10) ]
I | -
ey i ==
\11\ 8
[ \q\\\ —
[ SRR BRI BTN EU R RS S SRR
0 0.025 005 0.075 0.1 0125 0.15 0.175 0.2
2
(@/L,)
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Entropy density in the continuum

® At the reference temperature Ty the entropy E 3
density is obtained by extrapolating TP it it
o

2 [1] Book

5 _ 45 (1+¢&%) Zp Ty )e 300 ]

SSB 3272 fk T4 0.4? 4

0.3F E

02; é

. .. 0.1F 3

to the Contlnuum Ilmlt 0(;‘. ‘2 ‘ 4‘1 ‘ ‘6 ‘ é ‘ ‘1‘0‘ ‘ ‘1‘2‘ ‘ ‘1‘4‘ ‘ ‘1‘6‘ ‘ ‘1‘8‘ ‘ ‘2‘0‘ ‘ ‘2<2

T/T
C

® Precision between 0.5%—1.5%. Will be reduced to ~ 0.5% in the next few months
® At T ~ 20T, the entropy still differs from the Stefan-Boltzmann value by roughly 5%

® When matching with perturbation theory (blue line), the series has oscillating coeffs.
At T ~ 20T., the O(g°) is roughly 40% of total correction with respect to SB
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Entropy density in the continuum

® At the reference temperature Ty the entropy T

density is obtained by extrapolating ] — 3

0 R — P v

0sf o ]

1] Zoar *

2 Book E

s 45 (1+€>ZT<T0k>£ mgg? :

SSB 3272 & T4 g;&: :

0.2? E

H . . 0.1; é

to the Contlnuum Ilmlt 0(; * ‘é‘ ‘ ‘411‘ ‘ ‘é‘ ‘ ‘é‘ ‘ ‘110‘ ‘ ‘112‘ ‘ ‘114‘ ‘ ‘116‘ ‘ ‘118‘ ‘ ‘210‘ ‘ ‘2<2
T/T

® Results for T' < 4T, agree with [Boyd et al 96, Meyer 09]

® For T > 27T, agree with [Borsanyi et al 13] within errors. We observe a tension with these
data, however, for T' < 2T,

® The computation at more temperature values in the region 7" < 27T, and
atT > 2071, is in progress
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Conclusions and outlook (I)

® L orentz invariance implies a great degree of redundancy in defining a relativistic
thermal theory in the Euclidean path-integral formalism

® In the thermodynamic limit, the orientation of the compact periodic direction with
respect to the coordinate axes can be chosen at will and only its length is relevant

f(Lm/l +£2) = — Jim_ ﬁ InZ(Lo, &)

0

® The redundancy in the description implies that the total energy and momentum
distributions in the canonical ensemble are related

® For a finite-size system, the lengths of the box dimensions break this invariance.
Being a soft breaking, however, interesting exact Ward ldentities survive

® As in the standard case, if the lightest screening mass M # 0, leading finite-size
corrections are exponentially small in (M L)
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Conclusions and outlook (II)

® When the theory is regularized on a lattice, the overall orientation of the periodic
directions with respect to the lattice coordinate system affects renormalized
observables at the level of lattice artifacts

® As the cutoff is removed, the artifacts are suppressed by a power of the spacing

® The flexibility in the lattice formulation added by the introduction of a triplet & of
(renormalized) parameters has interesting consequences:

* WIs to renormalize non-perturbatively 7},,

x Simpler ways to compute thermodynamic potentials

_ZTLo(l i 52)3/2
Ek

S =

<T0k > Vsbe

® In the Yang—Mills theory we defined non-perturbatively 7},.,, and we computed the
entropy density over several orders of magnitude in 7'. Discretization and statistical
errors are at the level of a few per mille in both cases
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