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Thermal field theories in the Euclidean path integral formalism

From textbooks

Z(L0) = Tr
{
e−L0Ĥ

}

where the temperature is T = 1/L0

φ(x) = φ(x+ Vpbcm) m ∈ Z
4

Vpbc =




L0 0 0 0

0 L1 0 0

0 0 L2 0

0 0 0 L3




The basic thermodynamic quantities are defined as

f = − 1

L0V
lnZ(L0) e = − 1

V

∂

∂L0
lnZ(L0) s = −L2

0

V

∂

∂L0

{ 1

L0
lnZ(L0)

}

which in the thermodynamic limit lead to

p = −f s = L0(e+ p) cv = −L0
∂

∂L0
s
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Path integrals with shifted boundary conditions: infinite-volume limit (I)

We are interested in the partition function

Z(L0, ξ) = Tr
{
e−L0(Ĥ−iξ·P̂ )

}

φ(x) = φ(x+Vsbcm) m ∈ Z
4

Vsbc =




L0 0 0 0

L0ξ1 L1 0 0

L0ξ2 0 L2 0

L0ξ3 0 0 L3



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Path integrals with shifted boundary conditions: infinite-volume limit (I)

We are interested in the partition function

Z(L0, ξ) = Tr
{
e−L0(Ĥ−iξ1P̂1)

}

where we have chosen ξ = {ξ1, 0, 0}

By making an Euclidean ”boost” rotation

γ1 =
1√

1 + ξ21

φ(x) = φ(x+Vsbcm) m ∈ Z
4

Vsbc =




L0 0 0 0

L0ξ1 L1 0 0

0 0 L2 0

0 0 0 L3




Λ =




γ1 γ1ξ1 0 0

−γ1ξ1 γ1 0 0

0 0 1 0

0 0 0 1



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Path integrals with shifted boundary conditions: infinite-volume limit (I)

We are interested in the partition function

Z(L0, ξ) = Tr
{
e−L0(Ĥ−iξ1P̂1)

}

where we have chosen ξ = {ξ1, 0, 0}

By making an Euclidean ”boost” rotation

γ1 =
1√

1 + ξ21

Lorentz [SO(4)] invariance implies

Z(L0, ξ) = Tr
{
e−L1γ1(H̃+iξ1P̃0)

}

φ(x) = φ(x+Vsbcm) m ∈ Z
4

Vsbc =




L0 0 0 0

L0ξ1 L1 0 0

0 0 L2 0

0 0 0 L3




Λ =




γ1 γ1ξ1 0 0

−γ1ξ1 γ1 0 0

0 0 1 0

0 0 0 1




V ′
sbc=ΛVsbc=




L0/γ1 L1γ1ξ1 0 0

0 L1γ1 0 0

0 0 L2 0

0 0 0 L3



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Path integrals with shifted boundary conditions: infinite-volume limit (II)

Assuming that H̃ has a translationally-invariant

vacuum and a mass gap [ξ = {ξ1, 0, 0}]

Z(L0, ξ) = Tr
{
e−L1γ1(H̃+iξ1P̃0)

}

the right hand side becomes insensitive to the

phase in the limit L1 → ∞ at fixed ξ1

f
(
L0

√
1 + ξ21

)
= − lim

V →∞

1

L0V
lnZ(L0, ξ)

Thanks to cubic symmetry (infinite volume)

f
(
L0, ξ

)
= f

(
L0

√
1 + ξ2,0

)

for a generic shift ξ

V ′
sbc=ΛVsbc=




L0/γ1 L1γ1ξ1 0 0

0 L1γ1 0 0

0 0 L2 0

0 0 0 L3




V ′′
sbc =




L0/γ1 0 0 0

0 L1γ1 0 0

0 0 L2 0

0 0 0 L3




φ(x0,x) = φ(x0+L0,x+L0ξ)
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Thermal field theory in a moving frame

If Ĥ and P̂ are the Hamiltonian and the total momentum operator expressed in a

moving frame, the standard partition function is

Z(L0,v) ≡ Tr
{
e−L0 (Ĥ−v·P̂ )

}

If we continue Z to imaginary velocities v = iξ

Z(L0, ξ) = Tr {e−L0(Ĥ−iξ·P̂ )}

The functional dependence f(L0

√
1 + ξ2) is consistent with modern thermodynamic

arguments on the Lorentz transformation of the temperature and the free-energy
[Ott 63; Arzelies 65; see Przanowski 11 for a recent discussion]

In the zero-temperature limit the invariance of the theory (and of its vacuum) under

the Poincaré group forces its free energy to be independent of the shift ξ

At non-zero temperature the finite length L0 breaks SO(4) softly, and the free energy

depends on the shift (velocity) but only through the combination β = L0

√
1 + ξ2
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Euclidean Ward identities for correlators of Tµν

At ξ = 0 the dependence of f from the combination L0

√
1 + ξ2 in turn implies

L0 〈T 01 T01〉c = 〈T00〉 − 〈T11〉

L3
0 〈T 01 T 01 T 01 T01〉c = 9 〈T11〉 − 9 〈T00〉+ 3L0 〈T 00T00〉c

. . .

where 〈T00〉 = −e, 〈T11〉 = p, P̂1 → −iT 01 and

Tµν(x0) =

∫
d3xTµν(x)

Note that:

∗ All operators at non-zero distance

∗ Number of EMT on the two sides different

∗ On the lattice they can be imposed to fix the renormalization of Tµν
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Ward identities at non-zero shift

When ξ 6= 0 odd derivatives in the ξk do not vanish anymore, and new interesting

WIs hold. The first non-trivial one is

〈T0k〉ξ =
ξk

1− ξ2k

{
〈T00〉ξ − 〈Tkk〉ξ

}

By deriving twice with respect to the ξk

〈T0k〉ξ =
L0ξk

2

∑

ij

〈
T 0i T0j

〉
ξ, c

[
δij − ξi ξj

ξ2

]

Note that also in this case:

∗ All operators at non-zero distance

∗ Number or components of EMT on the two sides different

∗ On the lattice they can be imposed to fix the renormalization of Tµν
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Entropy density from the response to the shift

The Entropy density can be computed as

s = −L0 (1 + ξ2)3/2

ξk
〈T0k〉ξ

or as

s = − (1 + ξ2)3/2

ξk
lim

V →∞

1

V

∂

∂ξk
lnZ(L0, ξ)

With respect to the standard technique:

∗ No ultraviolet power divergent subtraction

(zero temperature subtraction)

∗ On the lattice finite multiplicative renormalization

constant fixed non-perturbatively by WIs
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Path integrals with shifted boundary conditions: finite-size effects

The leading finite-size contributions to the free energy are

f(Vsbc)− f
(
L0

√
1 + ξ2

)
= I1 + I2 + I3 + · · ·

where for Lk = L

Ii =
γν

2πL0L3

1

r

d

dr

[ e−MLr

r

]∣∣∣
r=ri

, ri =
γ

γ̄i
, γ̄i = 1/

√
1 +

∑

k 6=i

ξ2k

with M and ν being the mass and the multiplicity of the lightest screening state

Analogous formula for the entropy by noticing that

〈T0k〉Vsbc
− 〈T0k〉ξ = − ∂

∂ξk

3∑

i=1

Ii + . . .

WIs can be derived analogously in finite volume. They are modified by terms which

vanish exponentially in the thermodynamic limit
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Lattice gauge theory [Wilson 74]

A Yang-Mills theory can be defined on a

discretized space-time so that gauge

invariance is preserved

The the gauge field Uµ ∈ SU(3) resides on

links

The Wilson action is

SG[U ] =
β

2

∑

x

∑

µ,ν

[
1− 1

3
ReTr

{
Uµν(x)

}]

where β = 6/g20 and the plaquette is

Uµν(x) = Uµ(x)Uν(x+ µ̂)U†
µ(x+ ν̂)U†

ν (x)

Discrete shifts in the boundary conditions can

be implemented straightforwardly

a
L

x x + µ

x + ν x + µ + ν

U †
ν
(x)

Uµ(x)
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Non-perturbative renormalization of Tµν

On the lattice the Poincaré group is broken down to a discrete group and standard

discretizations of Tµν acquire finite ultraviolet renormalizations

We focus on the SU(3) Yang–Mills. The analysis applies to other theories as well

TR
µν = ZT

{
T

[1]
µν + zT T

[3]
µν + zS

[
T

[2]
µν − 〈T [2]

µν 〉0
]}

.

T
[1]
µν = (1− δµν)

1

g20

{
Fa
µαF

a
να

}

T
[2]
µν = δµν

1

4g20
Fa
αβF

a
αβ

T
[3]
µν = δµν

1

g20

{
Fa
µαF

a
µα − 1

4
Fa
αβF

a
αβ

}

where

Fa
µν(x) = − i

4a2
Tr

{[
Qµν(x)−Qνµ(x)

]
Ta

}
, Qµν(x) =

∑
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The sextet renormalization constant ZT

The continuum relation

〈T0k〉ξ =
1

L0
lim

V →∞

1

V

∂

∂ξk
lnZ(L0, ξ)

can be imposed on the lattice to fix ZT

ZT (g20) = − ∆f

∆ξk

1

〈T [1]
0k 〉ξ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g
0

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Z
T

fit
a/L

0
-> 0

1 loop PT

where the derivative in the shift is discretized by the symmetric finite difference

∆f

∆ξk
=

1

2aV
ln

[Z(L0, ξ − ak̂/L0)

Z(L0, ξ + ak̂/L0)

]

The final results for ZT (g20) are well represented by

ZT (g20) =
1− 0.4457 g20
1− 0.7165 g20

− 0.2543 g40 + 0.4357 g60 − 0.5221 g80

with the error that varies from 0.4% up 0.7% in the range 0 ≤ g20 ≤ 1

L. Giusti – Origin of Mass 2015 - Odense May 2015 – p. 13/23



The sextet renormalization constant ZT

The continuum relation

〈T0k〉ξ =
1

L0
lim

V →∞

1

V

∂

∂ξk
lnZ(L0, ξ)

can be imposed on the lattice to fix ZT

ZT (g20) = − ∆f

∆ξk

1

〈T [1]
0k 〉ξ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g
0

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Z
T

fit
a/L

0
-> 0

1 loop PT

where the derivative in the shift is discretized by the symmetric finite difference

∆f

∆ξk
=

1

2aV
ln

[Z(L0, ξ − ak̂/L0)

Z(L0, ξ + ak̂/L0)

]

Within statistical errors, the non-perturbative determination starts to deviate

significantly from the one-loop result [Caracciolo et al. 88, 90]

ZT (g20) = 1 + 0.27076 g20

already at g20 ∼ 0.25
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The triplet renormalization constant zT

The continuum relation

〈T0k〉ξ =
ξk

1− ξ2k

{
〈T00〉ξ − 〈Tkk〉ξ

}

is enforced on the lattice to determine zT

zT (g20) =
1− ξ2k
ξk

〈T [1]
0k 〉ξ

〈T [3]
00 〉ξ − 〈T [3]

kk 〉ξ

with the condition
L ξk

L0(1+ξ2
k
)
= q ∈ Z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g
0

2

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

z
T

fit
a/L

0
=0 

1 loop PT

The results for zT (g20) are well represented by

zT (g20) =
1− 0.5090 g20
1− 0.4789 g20

where the error grows linearly from 0.15% to 0.75% in the interval 0 ≤ g20 ≤ 1
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The triplet renormalization constant zT

The continuum relation

〈T0k〉ξ =
ξk

1− ξ2k

{
〈T00〉ξ − 〈Tkk〉ξ

}

is enforced on the lattice to determine zT

zT (g20) =
1− ξ2k
ξk

〈T [1]
0k 〉ξ

〈T [3]
00 〉ξ − 〈T [3]

kk 〉ξ

with the condition
L ξk

L0(1+ξ2
k
)
= q ∈ Z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g
0

2

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

z
T

fit
a/L

0
=0 

1 loop PT

Within statistical errors, the non-perturbative determination starts to deviate

significantly from the one-loop result [Caracciolo et al. 88, 90]

zT (g20) = 1− 0.03008 g20

already at g20 ∼ 0.4
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Computation of the entropy density

Once ZT has been determined, the entropy density can be computed as (ξk 6= 0)

s = −ZTL0(1 + ξ2)3/2

ξk
〈T [1]

0k 〉ξ

thanks to the misalignment of the lattice axes with respect to the periodic directions

A step-scaling function for s(T )/T 3 can be defined as

Σs(T, r) ≡
1

r3
s(rT )

s(T )
=

(1 + ξ2)3

(1 + ζ2)3
ζk

ξk

〈T [1]
0k 〉ξ

〈T [1]
0k 〉ζ

where the step is given by r =
√

1 + ζ2/
√

1 + ξ2

The entropy density at a given T can be obtained by solving the recursive relation

v0 =
s(T0)

T 3
0

, vk+1 = Σs(Tk, r)vk , Tk = rkT0

The step-scaling function does not require any ultraviolet renormalization factor,

and it has a universal continuum limit
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Computation of the entropy density

Once ZT has been determined, the entropy density can be computed as (ξk 6= 0)

s = −ZTL0(1 + ξ2)3/2

ξk
〈T [1]

0k 〉ξ

thanks to the misalignment of the lattice axes with respect to the periodic directions

In practice we consider the step-scaling function

Σs(T,
√
2) =

1

8

〈T [1]
01 〉(1,0,0)

〈T [1]
01 〉(1,1,1)

Being T the only relevant scale in the problem (no zero-temperature subtraction

needed), various orders of magnitude in T can be spanned this way in the spirit of

the multi-step matching technique [Lüscher et al. 93-94]
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Finite-size effects in the entropy density

The leading finite-size corrections are given by

∆s

sSB
= − 45

32π2

L4
0

γ6ξk

{
〈T0k〉Vsbc

− 〈T0k〉ξ
}

The perturbative expression for the lightest

screening mass is [Laine, Vepsalainen 09]

M2 = 2Tg + . . . , M3 = 30T
g2

4π
+ . . .

It is realistic to consider boxes with (LT ) > 10 where finite-size effects are negligible.

Thanks to the locality of the observable, the cost of the simulation is volume

independent at fixed statistical error
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+ . . .
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Numerical computation of the step-scaling function (I)

We have considered 10 different values
of the temperature in the range Tc–20Tc

T0

2
, T0 , . . . , 8T0 , 8

√
2T0

where T0 = 1/Lmax ≃ 1.802Tc [Capitani et al. 98]

For each temperature, 4 values of the lattice

spacing have been simulated to extrapolate

the step-scaling function to the continuum limit

We have chosen aspect ratios (LT ) > 10.

Finite-size effects checked explicitly with

dedicated runs. They are negligible within

statistical errors

id L/a L0/a β TL

A1 80 3 5.8506 13.3

A2 128 4 6.0056 16.0

A3 128 5 6.1429 12.8

A4 128 6 6.2670 10.7

B1 80 3 6.0403 13.3

B2 128 4 6.2257 16.0

B3 128 5 6.3875 12.8

B4 128 6 6.5282 10.7

C1 80 3 6.2670 13.3

C2 128 4 6.4822 16.0

C3 128 5 6.6575 12.8

C4 128 6 6.7981 10.7

D1 80 3 6.5282 13.3

D2 128 4 6.7533 16.0

D3 128 5 6.9183 12.8

D4 128 6 7.0750 10.7

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

H1 80 3 7.7039 13.3

H2 128 4 7.9489 16.0

H3 128 5 8.1405 12.8

H4 128 6 8.2982 10.7

I1 80 3 8.0060 13.3

I2 128 4 8.2458 16.0

I3 128 5 8.4346 12.8

I4 128 6 8.5908 10.7
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Numerical computation of the step-scaling function (II)

For the C lattices we fix T = T0 = 1/Lmax

In the first four steps the bare coupling

constant is fixed by requiring that

[Necco, Sommer 01]

Lmax/r0 = 0.738(16)

From the 4th step, we interpolate

quadratically in ln (L/a) each set of data at

constant ḡ2(L) and we choose [Capitani et al. 98]

1

aTk
=

Lk

a
= 2−k/2Lmax

a

id L/a L0/a β TL

A1 80 3 5.8506 13.3

A2 128 4 6.0056 16.0

A3 128 5 6.1429 12.8

A4 128 6 6.2670 10.7

B1 80 3 6.0403 13.3

B2 128 4 6.2257 16.0

B3 128 5 6.3875 12.8

B4 128 6 6.5282 10.7

C1 80 3 6.2670 13.3

C2 128 4 6.4822 16.0

C3 128 5 6.6575 12.8

C4 128 6 6.7981 10.7

D1 80 3 6.5282 13.3

D2 128 4 6.7533 16.0

D3 128 5 6.9183 12.8

D4 128 6 7.0750 10.7

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

H1 80 3 7.7039 13.3

H2 128 4 7.9489 16.0

H3 128 5 8.1405 12.8

H4 128 6 8.2982 10.7

I1 80 3 8.0060 13.3

I2 128 4 8.2458 16.0

I3 128 5 8.4346 12.8

I4 128 6 8.5908 10.7
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Extrapolation to the continuum limit of Σs

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

(a/L
0
)
2

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Σ(
T

, 
2

1
/2

)

Discretization effects and statistical errors are at the level of per mille

A precision of half a percent in the continuum limit is reached

At fixed statistical error, the cost of the simulation is volume independent thanks to

the locality of the observable
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Step-scaling function in the continuum

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T/T
c

0.95

1

1.05

1.1

1.15

1.2

1.25

Σ(
T

, 
2

1
/2

)

Precision at the level of 0.5%

At T ∼ 15Tc, Σs already compatible with the high temperature limit within errors

Contribution from various orders (blue line) in the perturbative series is oscillating

(see below)
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Entropy density in the continuum

At the reference temperature T0 the entropy

density is obtained by extrapolating

s
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Entropy density in the continuum

At the reference temperature T0 the entropy

density is obtained by extrapolating
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Precision between 0.5%–1.5%. Will be reduced to ∼ 0.5% in the next few months

At T ∼ 20Tc the entropy still differs from the Stefan-Boltzmann value by roughly 5%

When matching with perturbation theory (blue line), the series has oscillating coeffs.

At T ∼ 20Tc, the O(g6) is roughly 40% of total correction with respect to SB
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Entropy density in the continuum

At the reference temperature T0 the entropy

density is obtained by extrapolating
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Results for T ≤ 4Tc agree with [Boyd et al 96, Meyer 09]

For T ≥ 2Tc agree with [Borsanyi et al 13] within errors. We observe a tension with these

data, however, for T ≤ 2Tc

The computation at more temperature values in the region T ≤ 2Tc and

at T > 20Tc is in progress
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Conclusions and outlook (I)

Lorentz invariance implies a great degree of redundancy in defining a relativistic

thermal theory in the Euclidean path-integral formalism

In the thermodynamic limit, the orientation of the compact periodic direction with

respect to the coordinate axes can be chosen at will and only its length is relevant

f
(
L0

√
1 + ξ2

)
= − lim

V →∞

1

L0V
lnZ(L0, ξ)

The redundancy in the description implies that the total energy and momentum

distributions in the canonical ensemble are related

For a finite-size system, the lengths of the box dimensions break this invariance.

Being a soft breaking, however, interesting exact Ward Identities survive

As in the standard case, if the lightest screening mass M 6= 0, leading finite-size

corrections are exponentially small in (ML)
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Conclusions and outlook (II)

When the theory is regularized on a lattice, the overall orientation of the periodic

directions with respect to the lattice coordinate system affects renormalized

observables at the level of lattice artifacts

As the cutoff is removed, the artifacts are suppressed by a power of the spacing

The flexibility in the lattice formulation added by the introduction of a triplet ξ of

(renormalized) parameters has interesting consequences:

∗ WIs to renormalize non-perturbatively Tµν

∗ Simpler ways to compute thermodynamic potentials

s = −ZTL0(1 + ξ2)3/2

ξk
〈T0k〉Vsbc

∗ . . .

In the Yang–Mills theory we defined non-perturbatively Tµν , and we computed the

entropy density over several orders of magnitude in T . Discretization and statistical

errors are at the level of a few per mille in both cases
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