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Quantum chromodynamics (QCD)

QCD is assumed to be the quantum field theory
of strong interactions in Nature. Its action
[Fritzsch, Gell-Mann, Leutwyler 73; Gross, Wilczek 73; Weinberg 73]

S[A, ψ̄i, ψi; g,mi, θ]

is fixed by few simple principles:

∗ SU(3)c gauge (local) invariance

∗ Quarks in fundamental representation
ψi = u, d, s, c, b, t

∗ Renormalizability

Present experimental results compatible with θ = 0

It is fascinating that such a simple action and few
parameters [g,mi] can account for the variety and
richness of strong-interaction physics phenomena
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Asymptotic freedom

Quantization breaks scale invariance at mi = 0

The renormalized coupling constant is scale
dependent

µ
d

dµ
g = β(g)

and QCD is asymptotically free [b0 > 0]
[Gross, Wilczek 73; Politzer 73]

β(g) = −b0g3 − b1g
5 + . . .

g(µ)µ
−→

The theory develops a fundamental scale

Λ = µ
ˆ

b0g
2(µ)

˜−b1/2b
2
0 e

− 1
2b0g2(µ) e

−
R g(µ)
0 dg

»

1
β(g)

+ 1
b0g3 −

b1
b20g

–

which is a non-analytic function of the coupling constant at g2 = 0
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Perturbative corner: hard processes

Processes where the relevant energy scale is
µ≫ Λ can be studied by perturbative expansion

αs(µ) =
g2(µ)

4π
=

1

4πb0 ln ( µ
2

Λ2 )

2

41 − b1

b20

ln(ln( µ
2

Λ2 ))

ln( µ
2

Λ2 )
+ ...

3

5

An example is given by

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= 3
P

iQ
2
i ·

»

1 +
αs(µ)
π

+ C2

“

αs(µ)
π

”2
+ · · ·

–

[Bethke 09]
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Experimental results significantly prove the logarithmic dependence in µ/Λ predicted by
perturbative QCD
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Scale of the strong interactions

By comparing these measurements to theory

Λ ∼ 0.2 GeV 1/Λ ∼ 1 fm = 10−15 m

At these distances the dynamics of QCD is
non-perturbative

A rich spectrum of hadrons is observed at these
energies. Their properties such as the mass

Mn = bn Λ

need to be computed non-perturbatively

The theory is highly predictive: in the (interesting) limit mu,d,s = 0 and mc,b,t → ∞, for
instance, dimensionless quantities are parameter-free numbers

L. Giusti – Napoli May 2010 – p. 6/34



Lattice QCD: action[Wilson 74]

QCD can be defined on a discretized space-time
so that gauge invariance is preserved

Quark fields reside on a four-dimensional lattice,
the gauge field Uµ ∈ SU(3) resides on links

The Wilson action for the gauge field is

SG[U ] =
β

2

X

x

X

µ,ν

»

1 − 1

3
ReTr

n

Uµν(x)
o

–

where β = 6/g2 and the plaquette is defined as

Uµν(x) = Uµ(x)Uν(x+ µ̂)U†
µ(x+ ν̂)U†

ν (x)

Popular discretizations of fermion action: Wilson,
Domain-Wall-Neuberger, perfect actions, tmQCD

a
L

x x + µ

x + ν x + µ + ν

U †
ν(x)

Uµ(x)
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Lattice QCD: path integral[Wilson 74]

The lattice provides a non-perturbative definition of QCD. The path integral at finite
spacing and volume is mathematically well defined (Euclidean time)

Z =

Z

DUDψ̄iDψi e
−S[U,ψ̄i,ψi;g,mi]

Nucleon mass, for instance, can be extracted from the behaviour of a suitable two-point
correlation function at large time-distance

〈ON (x)ŌN (y)〉 =
1

Z

Z

DUDψ̄iDψi e
−S ON (x)ŌN (y) −→ RN e−MN |x0−y0|

For small gauge fields, the perturb. expansion differs from the usual one for terms of O(a)

g

p

p′

= −igT a
{

γµ −
i
2
(pµ + p

′

µ)a + O(a2)
}

Consistency of lattice QCD with the standard perturbative approach is thus guaranteed
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Lattice QCD: universality

Continuum and infinite-volume limit of LQCD is the non-perturbative definition of QCD

Details of the discretization become irrelevant in the continuum limit, and any reasonable
lattice formulation tends to the same continuum theory

MN (a) = MN + cNa+ . . .
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Lattice QCD: universality

Continuum and infinite-volume limit of LQCD is the non-perturbative definition of QCD

Details of the discretization become irrelevant in the continuum limit, and any reasonable
lattice formulation tends to the same continuum theory

MN (a) = MN + dNa
2 + . . .

By a proper tuning of the action and operators, convergence to continuum can be accel-
erated without introducing extra free-parameters [Symanzik 83; Sheikholeslami Wohlert 85; Lüscher et al. 96]

Finite-volume effects are proportional to exp(−MπL) at asymptotically large volumes
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Numerical lattice QCD: machines

Correlation functions at finite volume and finite
lattice spacing can be computed by Monte Carlo
techniques exactly up to statistical errors
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Numerical lattice QCD: machines

Typical lattice parameters:

a = 0.05 fm (aΛ)2 ∼ 0.25%

L = 3.2 fm =⇒ MπL ≥ 4, Mπ ≥ 0.25 GeV

V = 2L× L3 #points = 225 ∼ 3.4 · 107

Monte Carlo algorithms integrate over 107–109

SU(3) link variables

A typical cluster of PCs:

∗ Standard CPUs [AMD, Intel]

∗ Fast connection [40Gbit/s]

Lattice partitioned in blocks which are distributed
over the nodes (128 a good example)

Data exchange among nodes minimized thanks to
the locality of the action
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Numerical lattice QCD: algorithms

Extraordinary algorithmic progress over the last 30
years, keywords:

∗ Hybrid Monte Carlo (HMC)
Duane et al. 87

∗ Multiple time-step integration
Sexton, Weingarten 92

∗ Frequency splitting of determinant
Hasenbusch 01

∗ Domain Decomposition
Lüscher 04

∗ Mass preconditioning and rational HMC
Urbach et al 05; Clark, Kennedy 06

∗ Deflation of the low quark modes
Lüscher 07

[Della Morte et al. 05]

Light dynamical quarks can be simulated (continuum limit still problematic). Chiral regime
of QCD is becoming accessible

Algorithms are designed to produce exact results up to statistical errors
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Lattice QCD: a theoretical femtoscope

Lattice QCD is the femtoscope for studying strong
dynamics. Its lenses are made of quantum field
theory, numerical techniques and computers

It allows us to look also at quantities not accessi-
ble to experiments which may help understanding
the underlying mechanisms

Femtoscope still rather crude. Often we compute
what we can and not what would like to

An example: the signal-to-noise ratio of the
nucleon two-point correlation function

〈ON ŌN 〉2
∆2

∝ n e−(2MN−3Mπ)|x0−y0|

decreases exp. with time-distance of sources.
At physical point 2MN–3Mπ ≃ 7 fm−1

Lattice quantum field theory

Observables (probes)

Algorithms

Computers
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dynamics. Its lenses are made of quantum field
theory, numerical techniques and computers

It allows us to look also at quantities not accessi-
ble to experiments which may help understanding
the underlying mechanisms

Femtoscope still rather crude. Often we compute
what we can and not what would like to

Analogous problem for glueballs in Yang–Mills the-
ory solved by decomposing the path integral and
by enforcing the global symmetries of the theory
into the Monte Carlo [Della Morte, LG 08-10]

Lattice quantum field theory

Observables (probes)

Algorithms

Computers
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Lattice QCD: a theoretical femtoscope

Lattice QCD is the femtoscope for studying strong
dynamics. Its lenses are made of quantum field
theory, numerical techniques and computers

It allows us to look also at quantities not accessi-
ble to experiments which may help understanding
the underlying mechanisms

Femtoscope still rather crude. Often we compute
what we can and not what would like to

A rather general strategy is emerging: design spe-
cial purpose algorithms which exploit known math.
and phys. properties of the theory to be faster

Results from first-principles when all syst. uncer-
tainties quantified. This achieved without introduc-
ing extra free parameters or dynamical assump-
tions but just by improving the femtoscope

Lattice quantum field theory

Observables (probes)

Algorithms

Computers
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QCD action and its (broken) symmetries

QCD action for Nf = 3, M = diag(mu,md,ms)

S = SG +

Z

d4x
n

ψ̄Dψ + ψ̄Mψ
o

, D = γµ(∂µ + iAµ)

For M = 0 chiral symmetry

ψR,L → VR,LψR,L ψR,L =

„

1 ± γ5

2

«

ψ

Chiral anomaly: measure not invariant

SSB: vacuum not symmetric

Gauge symmetry

ψ(x) → G(x)ψ(x)

Confinement: no isolated coloured charge

SU(3)c × SU(3)L × SU(3)R × U(1)L × U(1)R ×Rscale

(dim. transm., chiral anomaly)

SU(3)c × SU(3)L × SU(3)R × U(1)B=L+R

(Spont. Sym. Break.)

SU(3)c × SU(3)L+R × U(1)B

(Confinement)

SU(3)L+R × U(1)B
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QCD action and its (broken) symmetries

QCD action for Nf = 3, M = diag(mu,md,ms)

S = SG +

Z

d4x
n

ψ̄Dψ + ψ̄Mψ
o

, D = γµ(∂µ + iAµ)

Confinement and SSB due to non-perturbative
dynamics

The mechanisms are still not know

Today focus on SSB and chiral anomaly
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Pseudo Nambu–Goldstone bosons in QCD

An axial Ward identity of the chiral group is [for simplicity M = diag(m,m,m)]

〈ψ̄1ψ1〉 = m

Z

d4x 〈P12(x)P21(0)〉 , Pij = ψ̄iγ5ψj

In the limit m→ 0

Σ = − lim
m→0

〈ψ̄1ψ1〉 6= 0 =⇒ M2 =
2mΣ

F 2
[Gell-Mann, Oakes, Renner 68]

where the decay constant is defined as

|〈0|Â12,µ|π−, p〉| =
√

2Fπ pµ , F = lim
m→0

Fπ
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Light pseudoscalar meson spectrum

Octet compatible with SSB pattern

SU(3)L × SU(3)R → SU(3)L+R

and soft explicit symmetry breaking

mu,md ≪ ms < Λ

mu,md ≪ ms =⇒mπ ≪ mK

A 9th pseudoscalar with mη′ ∼ O(Λ)

I I3 S Meson Quark Mass
Content (GeV)

1 1 0 π+ ud̄ 0.140
1 -1 0 π− dū 0.140
1 0 0 π0 (dd̄− uū)/

√
2 0.135

1
2

1
2

+1 K+ us̄ 0.494
1
2

- 1
2

+1 K0 ds̄ 0.498
1
2

- 1
2

-1 K− sū 0.494
1
2

1
2

-1 K
0

sd̄ 0.498

0 0 0 η cosϑη8 − sinϑη0 0.548

0 0 0 η′ sinϑη8 + cosϑη0 0.958

η8 = (dd̄+ uū− 2ss̄)/
√

6

η0 = (dd̄+ uū+ ss̄)/
√

3

ϑ ∼ −10◦
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SU(2) chiral effective theory[Weinberg 79; Gasser, Leutwyler 84]

Chiral effective theory for pions

Seff = S2
eff (U ;m,F,Σ) + S4

eff (U ;m,F,Σ,Λi) + · · ·

encodes spontaneous symmetry breaking

For m = 0 pions can interact only if they
carry momentum. Expansion in p and m

Chiral dynamics parameterized by effective
low-energy coupling constants

[Colangelo, Gasser, Leutwyler 01; Leutwyler 09]

0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

a0
0

-0.050 -0.050

-0.045 -0.045

-0.040 -0.040

-0.035 -0.035

-0.030 -0.030

a
2
0

Weinberg 1966

universal band
tree, one loop, two loops
scalar radius 
CGL
MILC
NPLQCD
CERN
ETM
RBC/UKQCD
JLQCD
PACS-CS
Feng, Jansen & Renner
DIRAC
NA48 K3π
NA48 Ke4

For instance the pion mass and decay constant at O(p4) are given by

M2
π = M2

n

1 +
M2

32π2F 2
ln

“M2

Λ2
3

”o

, Fπ = F
n

1 − M2

16π2F 2
ln

“M2

Λ2
4

”o

Analogous expressions for other quantities such as S-wave ππ scattering lengths a0
0 and a2

0
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Lattice QCD with two light dynamical quarks[Del Debbio, LG, Lüscher, Petronzio, Tantalo 06-08]

Chiral regime is becoming accessible to
lattice QCD simulations

The pion mass squared is found to be a nearly
linear function of quark mass up to (0.5 GeV)2.
At smallest masses non-linear correction is 1 - 3%

Non-Abelian chiral symmetry spontaneously
broken as expected

Compatible with the fact that the bulk of the mass
is given by the leading term in standard ChPT

Relations dictated by SSB can be verified quanti-
tatively. GMOR is maybe the simplest to start with
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m
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1

M
π2 [G
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a=0.0784 fm, L=2.5 fm

<-- 0.256 GeV

Low-energy constants will finally be determined
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Banks–Casher relation[Banks, Casher 80]

For each gauge configuration

Dmχk = (m+ iλk)χk

The spectral density of D is

ρ(λ,m) =
1

V

X

k

〈δ(λ− λk)〉

where 〈. . . 〉 indicates path-integral average
0 0.1 0.2 0.3 0.4 0.5

λ [GeV]

0

1

2

3

4

ρ(
λ,

m
)∗

(π
/Σ

)

The Banks–Casher relation

lim
λ→0

lim
m→0

lim
V→∞

ρ(λ,m) =
Σ

π

provides a link between the condensate and the (non-zero) spectral density at the origin.
To be compared, for instance, with the free case ρ(λ) ∝ |λ3|
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Banks–Casher relation[Banks, Casher 80]

For each gauge configuration

Dmχk = (m+ iλk)χk

The spectral density of D is

ρ(λ,m) =
1

V

X

k

〈δ(λ− λk)〉

where 〈. . . 〉 indicates path-integral average
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Λ

,m
)

L=2.5 fm, V=2L
4

The number of modes in a given energy interval

ν(Λ,m) = V

Z Λ

−Λ
dλ ρ(λ,m) ν(Λ,m) =

2

π
ΛΣV + . . .

grows linearly with Λ, and they condense near the origin with values ∝ 1/V

In the free case ν(Λ,m) ∝ V Λ4
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Renormalization and continuum limit[LG, Lüscher 09]

Instead of the spectral density, consider the spectral sum

σk(mv ,m) = V

Z ∞

−∞
dλ

ρ(λ,m)

(λ2 +m2
v)
k

= −a8k
X

x1 ...x2k

〈P12(x1 )P23(x2 ) . . . P2k1 (x2k
)〉

∗ Integral converges if k ≥ 3

∗ The relation between σk(mv ,m) and ρ(λ,m) invertible for every k

Renormalization properties of ρ(λ,m) can thus be inferred from those of σk
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Renormalization and continuum limit[LG, Lüscher 09]

Instead of the spectral density, consider the spectral sum

σk(mv ,m) = V

Z ∞

−∞
dλ

ρ(λ,m)

(λ2 +m2
v)
k

= −a8k
X

x1 ...x2k

〈P12(x1 )P23(x2 ) . . . P2k1 (x2k
)〉

Corr. functions of pseudoscalar densities at physical distance renormalized by (1/Zm)2k

At short distance the flavour structure implies

P12(x1 )P23(x2 ) ∼ C(x1−x2 )S13(x1 ) S13 = ψ̄1ψ3

where C(x) diverges like |x|−3 and it is therefore integrable. Analogous argument for all
other short-distance singularities. No extra contact terms needed to renormalize σk
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Renormalization and continuum limit[LG, Lüscher 09]

Instead of the spectral density, consider the spectral sum

σk(mv ,m) = V

Z ∞

−∞
dλ

ρ(λ,m)

(λ2 +m2
v)
k

= −a8k
X

x1 ...x2k

〈P12(x1 )P23(x2 ) . . . P2k1 (x2k
)〉

Once the gauge coupling and the mass(es) are renormalized, the spectral sum

σk,R(mvR ,mR ) = Z−2k
m σk

„

mvR
Zm

,
mR

Zm

«

is ultraviolet finite. Continuum limit universal (if same renormalization conditions are used)
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Renormalization and continuum limit[LG, Lüscher 09]

Instead of the spectral density, consider the spectral sum

σk(mv ,m) = V

Z ∞

−∞
dλ

ρ(λ,m)

(λ2 +m2
v)
k

= −a8k
X

x1 ...x2k

〈P12(x1 )P23(x2 ) . . . P2k1 (x2k
)〉

The spectral density thus renormalizes as

ρR(λR ,mR ) = Z−1
m ρ

„

λR

Zm
,
mR

Zm

«

For Wilson fermions similar derivation but twisted-mass valence quarks
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Renormalization and continuum limit[LG, Lüscher 09]

Instead of the spectral density, consider the spectral sum

σk(mv ,m) = V

Z ∞

−∞
dλ

ρ(λ,m)

(λ2 +m2
v)
k

= −a8k
X

x1 ...x2k

〈P12(x1 )P23(x2 ) . . . P2k1 (x2k
)〉

It follows that the mode number is a renormalization-group invariant

νR(ΛR ,mR ) = ν(Λ,m)

and its continuum limit is universal for any value of Λ and m
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Numerical computation (I)[LG, Lüscher 09]

Lattice details:

∗ Nf = 2 degenerate quarks

∗ Action: O(a)-improved Wilson

∗ a = 0.0784 fm

∗ V = 2L× L3, L = 1.9, 2.5 fm

∗mMS
R

(2GeV) = 0.013, 0.026, 0.046 GeV

∗ ΛMS
R

(2GeV) = 0.07, 0.085, 0.1, 0.115 GeV
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Numerical computation (I)[LG, Lüscher 09]

Lattice details:

∗ Nf = 2 degenerate quarks

∗ Action: O(a)-improved Wilson

∗ a = 0.0784 fm

∗ V = 2L× L3, L = 1.9, 2.5 fm

∗mMS
R

(2GeV) = 0.013, 0.026, 0.046 GeV

∗ ΛMS
R

(2GeV) = 0.07, 0.085, 0.1, 0.115 GeV

Finite volume effects below stat. errors (1.5%).
ChPT suggests a fraction of a percent
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A nearly linear function up to 0.1 Gev. Qualitative in line with ChPT, but the fact that the
linear behaviour extends to such large values of ΛR is rather striking and unexpected
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Numerical computation (I)[LG, Lüscher 09]

Lattice details:

∗ Nf = 2 degenerate quarks

∗ Action: O(a)-improved Wilson

∗ a = 0.0784 fm

∗ V = 2L× L3, L = 1.9, 2.5 fm

∗mMS
R

(2GeV) = 0.013, 0.026, 0.046 GeV

∗ ΛMS
R

(2GeV) = 0.07, 0.085, 0.1, 0.115 GeV

Finite volume effects below stat. errors (1.5%).
ChPT suggests a fraction of a percent
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In the effective theory at NLO

νnlo(Λ,m) =
2ΛΣV

π



1 − mΣ

(4π)2F 4

»

3 ln

„

ΛΣ

F 2Λ2
6

«

+ ln(2) +
π

2

m

Λ
+O

„

m2

Λ2

«–ff

corrections of O(10%) for Λ = 0.05–0.1 GeV and m ≤ 0.02 GeV. No chiral logs ∝ m ln(m)
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Numerical computation (II)[LG, Lüscher 09]

An effective condensate can be defined as

ΣR =
π

2V

∂

∂ΛR

νR(ΛR ,mR )

prefactor so that ΣR coincides with Σ at LO

A linear extrapolation to the chiral limit yields

h

ΣMS
R

(2 GeV)
i1/3

= 0.276(3)(4)(5) GeV 0 0.05 0.1 0.15 0.2

m
R
[GeV]

0
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0.2

0.3

0.4
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1

M
π2 [G

eV
2 ]

GMOR

a=0.0784 fm, L=2.5 fm

<-- 0.256 GeV

A clear and consistent picture is emerging. For m
R

≤ 0.05 GeV the GMOR formula
accounts for the bulk of the pion mass. But discretization errors not quantified yet
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Why is the symmetry spontaneously broken?

Dynamical process not yet known. Studies of
low modes can provide important clues

The Banks–Casher mechanism is:

∗ insensitive to lattice details (universality)

∗ largely insensitive to dynamical quark effects

∗ present also in quenched QCD

It is tempting to read the relation in the other
direction, i.e. chiral symmetry is broken because
the low-modes of the Dirac operator condense

Σ

π
= lim
λ→0

lim
m→0

lim
V→∞

ρ(λ,m)

0
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〈αk
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Eigenvalues ofD†
mDm
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Outline

Introduction to (lattice) QCD:

∗ Asymptotic freedom and dimensional transmutation

∗ Quantum chromodynamics on a lattice

Spontaneous symmetry breaking:

∗ Banks–Casher relation

∗ Renormalization of the spectral density

∗ Exploratory numerical study

Witten–Veneziano solution to the U(1)A problem:

∗ Definition of the topological susceptibility

∗ Non-perturbative computation

Conclusions

L. Giusti – Napoli May 2010 – p. 24/34



Light pseudoscalar meson spectrum

Octet compatible with SSB pattern

SU(3)L × SU(3)R → SU(3)L+R

and soft explicit symmetry breaking

mu,md ≪ ms < Λ

mu,md ≪ ms =⇒mπ ≪ mK

A 9th pseudoscalar with mη′ ∼ O(Λ)

I I3 S Meson Quark Mass
Content (GeV)

1 1 0 π+ ud̄ 0.140
1 -1 0 π− dū 0.140
1 0 0 π0 (dd̄− uū)/

√
2 0.135

1
2

1
2

+1 K+ us̄ 0.494
1
2

- 1
2

+1 K0 ds̄ 0.498
1
2

- 1
2

-1 K− sū 0.494
1
2

1
2

-1 K
0

sd̄ 0.498

0 0 0 η cosϑη8 − sinϑη0 0.548

0 0 0 η′ sinϑη8 + cosϑη0 0.958

η8 = (dd̄+ uū− 2ss̄)/
√

6

η0 = (dd̄+ uū+ ss̄)/
√

3

ϑ ∼ −10◦
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The Witten–Veneziano mechanism[Witten 79; Veneziano 79]

An axial Ward identity of the chiral group is

Z

d4x 〈Q(x)Q(0)〉 = m1m2

Z

d4x 〈P11(x)P22 (0)〉 , Q(x) = − 1

32π2
ǫµνρσTr

h

Fµν(x)Fρσ(x)
i

In the limit Nc → ∞

χ∞ = lim
Nc→∞

Z

d4x 〈Q(x)Q(0)〉 6= 0 =⇒ lim
Nc→∞

lim
mi→0

F 2M2
η′

2Nf
= χ∞

Note that for Nc → ∞:

∗ U(1)A is restored

∗ η′ becomes a Nambu–Goldstone boson =⇒Mη′ = 0

∗ At first order in 1/Nc, M2
η′

= O(Nf/Nc)
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The Witten–Veneziano mechanism[Witten 79; Veneziano 79]

An axial Ward identity of the chiral group is

Z

d4x 〈Q(x)Q(0)〉 = m1m2

Z

d4x 〈P11(x)P22 (0)〉 , Q(x) = − 1

32π2
ǫµνρσTr

h

Fµν(x)Fρσ(x)
i

In the limit Nc → ∞

χ∞ = lim
Nc→∞

Z

d4x 〈Q(x)Q(0)〉 6= 0 =⇒ lim
Nc→∞

lim
mi→0

F 2M2
η′

2Nf
= χ∞

An unambiguous definition of the topological susceptibility is required. Naive definition
would diverge as

χ =

Z

d4x 〈Q(x)Q(0)〉 ∝ 1

a4
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The Witten–Veneziano mechanism with Ginsparg–Wilson fermions

With Ginsparg–Wilson fermions the lattice Ward identity is
[Neuberger 97; Hasenfratz, Laliena, Niedermayer 98; Lüscher 98; LG, Rossi, Testa, Veneziano 01]

X

x

a4 〈Q(x)Q(0)〉 = m1m2

X

x

a4 〈P11(x)P22(0)〉 , Q(x) = − 1

2a3
Tr

h

γ5D(x, x)
i

In the limit Nc → ∞

χ∞ = lim
Nc→∞

X

x

a4 〈Q(x)Q(0)〉 6= 0 =⇒ lim
Nc→∞

lim
mi→0

F 2M2
η′

2Nf
= χ∞

Need to demonstrate that the topological susceptibility suggested by GW fermions

χ =
X

x

a4 〈Q(x)Q(0)〉

is ultraviolet finite and unambiguously defined
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Renormalization and continuum limit[LG, Rossi, Testa 04; Lüscher 04]

A chain of Ward identities holds

Nf = 2 χ = m1m2

X

x1

a4〈P11 (x1 )P22(0)〉

. . . . . . . . .

. . . . . . . . .

Nf = 5 χ = m1 . . .m5

X

x1 ...x4

a16〈P31(x1 )S12 (x2 )S23(x3 )P54(x4 )S45(0)〉

It follows that the topological susceptibility is finite, it is renormalization-group invariant
and its continuum limit is universal for any value of m

A definition of χ even if the regularization breaks chiral symmetry

The limit Nc → ∞ is given by

lim
Nc→∞

χ = lim
Nc→∞

χYM

and finiteness in Yang–Mills theory is proven analogously by introducing pseudofermions
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Algorithm for zero-mode counting[LG, Hoelbling, Lüscher and Wittig 02]

A Monte Carlo computation of

χYM =
1

V

D

(n+ − n−)2
EYM

is challenging for several reasons

L ∼ 2 fm and a ∼ 0.08 fm =⇒ dim[D] ∼ 4.5 · 106

In finite V null probability for n+ 6= 0 and n− 6= 0

Simultaneous minimization of Ritz functionals for

D± = P±DP± P± =
1 ± γ5

2

to find the gap in one of the sectors and to
count the zero modes in the other

No contamination from quasi-zero modes

D
+

Ritz

n+ {
0

D
−

Ritz
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Non-perturbative computation forNc = 3 [Del Debbio, LG, Pica 04]

Combined fit of the form [χ2
dof = 0.73]

r40χ
YM(a, s) = r40χ

YM + c1(s)
a2

r20

gives

r40χ
YM = 0.059 ± 0.003

0 0.02 0.04 0.06 0.08

(a/r0)
2

0.04

0.05

0.06

0.07

0.08

0.09

r 0
4
χ L

Y
M
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YM(a, s) = r40χ

YM + c1(s)
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r20

gives

r40χ
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By setting the scale FK = 0.113(1) GeV
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dof = 0.73]

r40χ
YM(a, s) = r40χ

YM + c1(s)
a2

r20

gives

r40χ
YM = 0.059 ± 0.003

By setting the scale FK = 0.113(1) GeV

χYM = (0.191 ± 0.005 GeV)4

to be compared with

F 2

2Nf
(M2

η +M2
η′ − 2M2
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Non-perturbative computation forNc = 3 [Del Debbio, LG, Pica 04]

Combined fit of the form [χ2
dof = 0.73]

r40χ
YM(a, s) = r40χ

YM + c1(s)
a2

r20

gives

r40χ
YM = 0.059 ± 0.003

By setting the scale FK = 0.113(1) GeV

χYM = (0.191 ± 0.005 GeV)4

to be compared with

F 2

2Nf
(M2

η +M2
η′ − 2M2

K) ≈
exp

(0.175 GeV)4

The (leading) QCD anomalous contribution to M2
η′

supports the Witten–Veneziano explanation for its
large experimental value
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Do the instantons play a rôle ?[LG, Petrarca, Taglienti 07]

Vacuum energy and charge distribution are

e−F (θ) = 〈eiθQ〉 , PQ =

Z π

−π

dθ

2π
e−iθQe−F (θ)

Their behaviour is a distinctive feature of the
configurations that dominate the path integral

Large Nc expansion predicts

〈Q2n〉con
〈Q2〉 ∝ 1

N2n−2
c

Various conjectures. For example, dilute-gas
instanton model gives [’t Hooft 74; Callan et al. 76; . . . ]

F Inst(θ) = −V A{cos(θ) − 1}

〈Q2n〉con
〈Q2〉 = 1
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Do the instantons play a rôle ?[LG, Petrarca, Taglienti 07]

Vacuum energy and charge distribution are

e−F (θ) = 〈eiθQ〉 , PQ =

Z π

−π

dθ

2π
e−iθQe−F (θ)

Their behaviour is a distinctive feature of the
configurations that dominate the path integral

A lattice computation gives

〈Q4〉con
〈Q2〉

= 0.30 ± 0.11

Witten–Veneziano mechanism: the anomaly
gives a mass to the η′ boson thanks to the
non-perturbative quantum fluctuations of the
topological charge
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Conclusions

Lattice QCD is a phenomenal theoretical femtoscope to explore strong dynamics. Its
lenses are made of quantum field theory, numerical techniques and computers

It allows us to look at quantities not accessible to experiments that may unveil the
the underlying mechanisms of non-perturbative strong dynamics

A large variety of physics applications: QCD, flavour physics, beyond Standard Model
physics, etc.

Thanks to the recent extraordinary conceptual, technical and algorithmic advances the
chiral regime of the theory is becoming accessible

Today two particularly interesting applications:

∗ Banks–Casher relation

∗ Witten–Veneziano mechanism
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Lattice QCD is a phenomenal theoretical femtoscope to explore strong dynamics. Its
lenses are made of quantum field theory, numerical techniques and computers

It allows us to look at quantities not accessible to experiments that may unveil the
the underlying mechanisms of non-perturbative strong dynamics

A large variety of physics applications: QCD, flavour physics, beyond Standard Model
physics, etc.

Condensation of low-modes of the Dirac
operator most direct piece of theoretical
evidence for SSB

The rate of condensation explains the
bulk of the pion mass up to 0.5 GeV
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Conclusions

Lattice QCD is a phenomenal theoretical femtoscope to explore strong dynamics. Its
lenses are made of quantum field theory, numerical techniques and computers

It allows us to look at quantities not accessible to experiments that may unveil the
the underlying mechanisms of non-perturbative strong dynamics

A large variety of physics applications: QCD, flavour physics, beyond Standard Model
physics, etc.

Quantum fluctuations of the topological
charge in Yang–Mills theory generate a
non-zero value of χYM

Its value supports the Witten–Veneziano
explanation for the large mass of the η′ -6 -4 -2 0 2 4 6
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Conclusions

Lattice QCD is a phenomenal theoretical femtoscope to explore strong dynamics. Its
lenses are made of quantum field theory, numerical techniques and computers

It allows us to look at quantities not accessible to experiments that may unveil the
the underlying mechanisms of non-perturbative strong dynamics

A large variety of physics applications: QCD, flavour physics, beyond Standard Model
physics, etc.

The femtoscope, however, is still rather crude. There is continuous conceptual and
technical progress to empower it

LQCD will lead us to a precise quantitative understanding of QCD in the low-energy
regime, and to validate the theory to be the one of the strong interactions in Nature
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Lattice QCD with two light dynamical quarks[Del Debbio, LG, Lüscher, Petronzio, Tantalo 06-08]

Chiral regime is becoming accessible to
lattice QCD simulations

The pion mass squared is found to be a nearly
linear function of quark mass up to (0.5 GeV)2.
At smallest masses non-linear correction is 1 - 3%

Non-Abelian chiral symmetry spontaneously
broken as expected

Compatible with the fact that the bulk of the mass
is given by the leading term in standard ChPT

Relations dictated by SSB can be verified quanti-
tatively. GMOR is maybe the simplest to start with
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An example of the potentiality. From a fit to the curve

0.47 ≤ Λ3 ≤ 0.86 GeV to be compared with 0.2 ≤ Λ3 ≤ 2 GeV [Gasser, Leutwyler 84]
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Numerical computation (II)[LG, Lüscher 09]

An effective condensate can be defined as

ΣR =
π

2V

∂

∂ΛR

νR(ΛR ,mR )

prefactor so that ΣR coincides with Σ at LO

A linear extrapolation to the chiral limit yields

h

ΣMS
R

(2 GeV)
i1/3

= 0.276(3)(4)(5) GeV

The ETM collaboration from an overall fit
of the pion mass and decay constant

h

ΣMS
R

(2 GeV)
i1/3

GMOR

= 0.270(7) GeV [ETM Coll. 09]
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A clear and consistent picture is emerging. For m
R

≤ 0.05 GeV the GMOR formula
accounts for the bulk of the pion mass. But discretization errors not quantified yet
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