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QCD action and its (broken) symmetries

QCD action for Nf = 2, M = diag(m,m)

S = SG +

∫
d4x

{
ψ̄Dψ + ψ̄Mψ

}
, D = γµ(∂µ − iAµ)

For M = 0 chiral symmetry

ψ
R,L → V

R,LψR,L ψ
R,L =

(
1± γ5

2

)
ψ

Chiral anomaly: measure not invariant

SSB: vacuum not symmetric

Breaking due to non-perturbative dynamics.
Precise quantitative computations are being
made on the lattice

SU(3)c× SU(2)L × SU(2)R × U(1)L × U(1)R×Rscale

(dim. transm., chiral anomaly)

SU(3)c× SU(2)L × SU(2)R ×U(1)B=L+R

(Spont. Sym. Break.)

SU(3)c× SU(2)L+R ×U(1)B

(Confinement)

SU(2)L+R × U(1)B
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Overwhelming evidence of Spontaneous Symmetry Breaking in QCD

Since the very first simulations with light
dynamical quarks, the GMOR relation was
beautifully observed on the lattice

In the ϵ-regime ratios of low-lying eigen-
values of the Dirac operator are parameter-
free predictions of ChPT/RMT up to NLO
corrections. Lattice results turned out to be
in spectacular agreement with expectations
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Overwhelming evidence of Spontaneous Symmetry Breaking in QCD

Since the very first simulations with light
dynamical quarks, the GMOR relation was
beautifully observed on the lattice

In the ϵ-regime ratios of low-lying eigen-
values of the Dirac operator are parameter-
free predictions of ChPT/RMT up to NLO
corrections. Lattice results turned out to be
in spectacular agreement with expectations

After only a decade we have many results
with Nf=2, 2 + 1 and 2 + 1 + 1 flavours with
light quarks down to the physical point

The linear term explains the bulk of the pion
mass. Generalized ChPT can be dismissed.

[Dürr et al. 13]
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[Blum et al. 14; Murphy and Mawhinney on Thu 16th]
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Review of lattice results by the FLAG Working Group [Aoki et al. 14]

Chiral effective theory for pions

Seff = S2
eff(F,Σ) + S4

eff(F,Σ,Λi) + · · ·

encodes spontaneous symmetry breaking

For m = 0 pions can interact only if they
carry momentum. Expansion in p and m

Chiral dynamics parameterized by effective
low-energy coupling constants

In the chiral limit pion mass and decay constant
satisfy

M2
πF

2
π

2m

∣∣∣
m=0

= Σ , Fπ

∣∣∣
m=0

= F

Analogous expressions for other quantities such

a00 and a20, etc.
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Review of lattice results by the FLAG Working Group [Aoki et al. 14]

Chiral effective theory for pions

Seff = S2
eff(F,Σ) + S4

eff(F,Σ,Λi) + · · ·

encodes spontaneous symmetry breaking

For m = 0 pions can interact only if they
carry momentum. Expansion in p and m

Chiral dynamics parameterized by effective
low-energy coupling constants

At O(p4) pion mass and decay constant are

M2
π = M2

{
1 +

M2

32π2F 2
ln

(M2

Λ2
3

)}

Fπ = F
{
1−

M2

16π2F 2
ln

(M2

Λ2
4

)}

where M2 = 2Σm/F 2. Analogous expressions

for other quantities such a00 and a20, etc.
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Review of lattice results by the FLAG Working Group [Aoki et al. 14]

Chiral effective theory for pions

Seff = S2
eff(F,Σ) + S4

eff(F,Σ,Λi) + · · ·

encodes spontaneous symmetry breaking

For m = 0 pions can interact only if they
carry momentum. Expansion in p and m

A comprehensive review of lattice results
is provided by the FLAG WG (n = 3, 4)

l̄n = ln

(
Λ2
n

M2

) ∣∣∣∣∣
M=139.6MeV

Significant reduction in the errors quoted since

last FLAG update for Σ, l̄3, l̄4 for Nf =2+1
[Dürr et al. 13; Blum et al. 14; Murphy and Mawhinney on Thu 16th]
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Growing evidence for the Witten–Veneziano mechanism [Witten 79; Veneziano 79]

Analogously to the GMOR relation, if we
expand also in 1/Nc

F 2
η′M2

η′

2Nf

∣∣∣∣∣

m=0

1
Nc

=0

= χYM

∣∣∣
1

Nc
=0

where χ has to be defined so that in presence
of fermions it satisfies the anomalous AWI

Exploratory studies with cooling techniques
well summarized in [Teper 00; Vicari, Panagopoulos 08]
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[Del Debbio et al. 04]

With Neuberger’s definition of the topological charge by setting the scale with FK

χYM = (193± 4 MeV)4 (Nc = 3)

to be compared with

F 2
π

6
(M2

η +M2
η′ − 2M2

K) ≈
exp

(180 MeV)4

The value of the (leading) QCD anomalous contribution to M2
η′ supports the Witten–

Veneziano explanation for its large experimental value. A lot of work still needed.
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Parallel talks closely related

Hadron Spectroscopy and Interactions [Tue 14th]

Bulava, Donald, Fahy, Fukaya, Hörz, Janowski, Soeldner, Ukita

Chiral Symmetry [Thu 16th]

Alexandru, Murphy, Mawhinney, Nishigaki, Ottnad, Pak, Verbaarschot, Zafeiropoulos

Vacuum structure and confinement [Fri 17th]

Cè , Doi, Glozman , Hasegawa, Horvath

Poster session [Fri 17th]

Jeong, Hashimoto, Holland
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Outline

Banks–Casher mechanism:

∗ Spectral density and the mode number

∗ The density in QCD Lite

∗ First results with Nf =2+1+1 flavours

Witten–Veneziano mechanism:

∗ Definition of the topological susceptibility from the gradient flow

∗ Recent numerical results in the Yang–Mills theory

∗ Universality tests

Topological susceptibility in QCD

∗ Numerical results

Conclusions and outlook
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Banks–Casher relation [Banks, Casher 80]

For each gauge configuration

Dmχk = (m+ iλk)χk

The spectral density of D is
[Banks, Casher 80; Leutwyler, Smilga 92; Shuryak, Verbaarschot 93]

ρ(λ,m) =
1

V

∑

k

⟨δ(λ− λk)⟩

where ⟨. . . ⟩ indicates path-integral average
0 0.1 0.2 0.3 0.4 0.5

λ [GeV]

0

1

2

3

4

ρ(
λ,

m
)∗

(π
/Σ

)
The Banks–Casher relation

lim
λ→0

lim
m→0

lim
V →∞

ρ(λ,m) =
Σ

π

can be read in both directions: a non-zero spectral density implies that the symmetry
is broken with a non-vanishing Σ and vice versa.

To be compared, for instance, with the free case ρ(λ) ∝ |λ3|
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Banks–Casher relation [Banks, Casher 80]

For each gauge configuration

Dmχk = (m+ iλk)χk

The spectral density of D is
[Banks, Casher 80; Leutwyler, Smilga 92; Shuryak, Verbaarschot 93]

ρ(λ,m) =
1

V

∑

k

⟨δ(λ− λk)⟩

where ⟨. . . ⟩ indicates path-integral average
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L=2.5 fm, V=2L
4

The number of modes in a given energy interval

ν(Λ,m) = V

∫ Λ

−Λ
dλ ρ(λ,m) ν(Λ,m) =

2

π
ΛΣV + . . .

grows linearly with Λ, and they condense near the origin with values ∝ 1/V

In the free case ν(Λ,m) ∝ V Λ4
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Renormalizability and universality of the spectral density [LG, Lüscher 09]

Instead of the spectral density, consider the spectral sum

σk(mv ,m) = V

∫ ∞

−∞
dλ

ρ(λ,m)

(λ2 +m2
v)

k

= −a8k
∑

x
1
...x

2k

⟨P
12
(x

1
)P

23
(x

2
) . . . P

2k1
(x

2k
)⟩

∗ Integral converges if k ≥ 3

∗ The relation between σk(mv ,m) and ρ(λ,m) invertible for every k

Renormalization properties of ρ(λ,m) can thus be inferred from those of σk
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Renormalizability and universality of the spectral density [LG, Lüscher 09]

Instead of the spectral density, consider the spectral sum

σk(mv ,m) = V

∫ ∞

−∞
dλ

ρ(λ,m)

(λ2 +m2
v)

k

= −a8k
∑

x
1
...x

2k

⟨P
12
(x

1
)P

23
(x

2
) . . . P

2k1
(x

2k
)⟩

With exact chiral symmetry, correlation functions of pseudoscalar densities at physical

distance are renormalized by (1/Zm)2k

At short distance the flavour structure implies

P
12
(x

1
)P

23
(x

2
) ∼ C(x

1
−x

2
)S

13
(x

1
) S

13
= ψ̄

1
ψ

3

where C(x) diverges like |x|−3 and it is therefore integrable. Analogous argument for
all other short-distance singularities. No extra contact terms needed to renormalize σk
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Renormalizability and universality of the spectral density [LG, Lüscher 09]

Instead of the spectral density, consider the spectral sum

σk(mv ,m) = V

∫ ∞

−∞
dλ

ρ(λ,m)

(λ2 +m2
v)

k

= −a8k
∑

x
1
...x

2k

⟨P
12
(x

1
)P

23
(x

2
) . . . P

2k1
(x

2k
)⟩

Once the gauge coupling and the mass(es) are renormalized, the spectral sum

σk,R(mvR ,m
R
) = Z−2k

m σk

(
mvR

Zm
,
m

R

Zm

)

is ultraviolet finite. Continuum limit universal (if same renormalization cond. are used)
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Renormalizability and universality of the spectral density [LG, Lüscher 09]

Instead of the spectral density, consider the spectral sum

σk(mv ,m) = V

∫ ∞

−∞
dλ

ρ(λ,m)

(λ2 +m2
v)

k

= −a8k
∑

x
1
...x

2k

⟨P
12
(x

1
)P

23
(x

2
) . . . P

2k1
(x

2k
)⟩

The spectral density thus renormalizes as

ρ
R
(λ

R
,m

R
) = Z−1

m ρ

(
λ
R

Zm
,
m

R

Zm

)

For Wilson fermions similar derivation but twisted-mass valence quarks

The rate of condensation is indeed a renormalizable universal quantity in QCD, and
is unambiguously defined once the bare parameters in the action of the theory have
been renormalized
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Renormalizability and universality of the spectral density [LG, Lüscher 09]

Instead of the spectral density, consider the spectral sum

σk(mv ,m) = V

∫ ∞

−∞
dλ

ρ(λ,m)

(λ2 +m2
v)

k

= −a8k
∑

x
1
...x

2k

⟨P
12
(x

1
)P

23
(x

2
) . . . P

2k1
(x

2k
)⟩

It follows that the mode number is a renormalization-group invariant

ν
R
(Λ

R
,m

R
) = ν(Λ,m)

and its continuum limit is universal for any value of Λ and m
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Spectral density in ChPT [Osborn et al. 99; LG, Lüscher 09; Damgaard, Fukaya 09; Damgaard et al. 10; Necco, Shindler 11]

When chiral symmetry is spontaneously broken, the spectral density can be
computed in ChPT. At the NLO

ρnlo(λ,m) =
Σ

π

{
1 +

mΣ

(4π)2F 4

[
3 l̄6 + 1− ln(2)− 3 ln

( Σm

F 2µ̄2

)
+ gν

(
λ

m

)]}

where gν(x) is a parameter-free known function

The NLO formula has properties which can be confronted against the NP results:

∗ at fixed λ no chiral logs are present when m → 0

gν(x)
x→∞−−−−→ −3 ln(x)

∗ in the chiral limit ρnlo(λ,m) becomes independent of λ
This is an accident of the Nf = 2 ChPT theory at NLO [Smilga, Stern 93]

∗ the λ dependence of ρnlo(λ,m) is a known function (up to overall constant).

The spectral density is a slowly decreasing function of λ at fixed m
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Numerical computation for Nf = 2 [Cichy et al. 13; Engel et al. 14]

Twisted-mass QCD [Cichy et al. 13]:

∗ a = 0.054–0.085 fm

∗ m = 16–47 MeV

∗ M = 50–120 MeV

∗ M =
√
Λ2 +m2

O(a)–improved Wilson fermions [Engel et al. 14]:

∗ a = 0.048–0.075 fm

∗ m = 6–37 MeV

∗ Λ = 20–500 MeV

∗ ν = −9.0(13)+2.07(7)Λ+0.0022(4)Λ2
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The mode number is a nearly linear function in Λ up to approximatively 100 MeV. The
modes do condense near the origin as predicted by the Banks–Casher mechanism
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∗ a = 0.054–0.085 fm

∗ m = 16–47 MeV
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∗ M =
√
Λ2 +m2

O(a)–improved Wilson fermions [Engel et al. 14]:

∗ a = 0.048–0.075 fm

∗ m = 6–37 MeV

∗ Λ = 20–500 MeV
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At fixed lattice spacing and at the percent precision, however, data show statistically
significant deviations from the linear behaviour of O(10%).
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Continuum limit [Engel et al. 14]

By defining

ρ̃(Λ1,Λ2,m) =
π

2V

ν(Λ2)− ν(Λ1)

Λ2 − Λ1

the continuum limit is taken at fixed m,
Λ1 and Λ2 [Λ = (Λ1 + Λ2)/2]

Data are extrapolated linearly in a2 as
dictated by the Symanzik analysis
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Continuum limit [Engel et al. 14]

By defining

ρ̃(Λ1,Λ2,m) =
π

2V

ν(Λ2)− ν(Λ1)

Λ2 − Λ1

the continuum limit is taken at fixed m,
Λ1 and Λ2 [Λ = (Λ1 + Λ2)/2]

Data are extrapolated linearly in a2 as
dictated by the Symanzik analysis
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It is noteworthy that no assumption on the presence of SSB was needed so far

The results show that at small quark masses the spectral density is non-zero and
(almost) constant in Λ near the origin

Data are consistent with the expectations from the Banks–Casher mechanism
in the presence of SSB. In this case NLO ChPT indeed predicts (Nf = 2)

ρ̃ nlo = Σ
{
1 +

mΣ

(4π)2F 4

[
3 l̄6 + 1− ln(2)− 3 ln

( Σm

F 2µ̄2

)
+ g̃ν

(
Λ1

m
,
Λ2

m

)]}
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Chiral limit

In the chiral limit NLO ChPT predicts ρ̃ to be
Λ-independent. By extrapolating to m = 0

[ρ̃ MS]1/3 = [ΣMS

BK(2GeV)]1/3 = 261(6)(8)MeV

where the spacing is fixed by introducing a
quenched strange quark with FK = 109.6 MeV

[Engel et al. 14]
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Chiral limit

In the chiral limit NLO ChPT predicts ρ̃ to be
Λ-independent. By extrapolating to m = 0

[ρ̃ MS]1/3 = [ΣMS

BK(2GeV)]1/3 = 261(6)(8)MeV

where the spacing is fixed by introducing a
quenched strange quark with FK = 109.6 MeV

From the average slope of the mode number
with respect to M (50 ≤ M ≤ 120 MeV), and
by extrapolating linearly in m

r0[Σ
MS

BK(2GeV)]1/3 = 0.689(16)(29)

where the residual M -dependence is ac-
counted for in the systematic error

No value in physical units given due to the
large uncertainty in the determination of the
lattice spacing from ETMC

[Engel et al. 14]
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Chiral limit

In the chiral limit NLO ChPT predicts ρ̃ to be
Λ-independent. By extrapolating to m = 0

[ρ̃ MS]1/3 = [ΣMS

BK(2GeV)]1/3 = 261(6)(8)MeV

where the spacing is fixed by introducing a
quenched strange quark with FK = 109.6 MeV

By using r0FK = 0.2794(44) fm from
[Fritzsch et al. 12] I get

[ΣMS

BK(2GeV)]1/3 = 270(6)(11)(4)MeV

an exercise that shows that the value is not
inconsistent with the result above. More work
by ETMC is desirable to clarify this issue

When extrapolated to the chiral limit by using
NLO ChPT (linearly), the spectral density in
the continuum limit is definitively non-zero

[Engel et al. 14]
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Gell-Mann–Oakes–Renner relation [Engel et al. 14]

The distinctive signature of SSB is the agree-

ment between ρ̃ and the slope of M2
πF

2
π/2

with respect to m in the chiral limit

On the same set of configurations by fitting the
data with NLO (W)ChPT for Mπ < 400 MeV

[ΣMS

GMOR(2GeV)]1/3 = 263(3)(4)MeV
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2
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with respect to m in the chiral limit

On the same set of configurations by fitting the
data with NLO (W)ChPT for Mπ < 400 MeV

[ΣMS

GMOR(2GeV)]1/3 = 263(3)(4)MeV

to be compared with the previous result

[ρ̃ MS]1/3 = [ΣMS

BK(2GeV)]1/3 = 261(6)(8)MeV

The spectral density of the Dirac operator in
the continuum is ̸= 0 at the origin for m = 0

The low-modes of the Dirac operator do con-
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dense as expected in the Banks–Casher mechanism

The rate of condensation agrees with the GMOR relation, and it explains the bulk of
the pion mass up to Mπ ≤ 500 MeV
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The dimensionless ratios

[ΣRGI]1/3/F = 2.77(2)(4) , ΛMS/F = 3.6(2)

are “geometrical” properties of the theory. They belong to the category of unambiguous
quantities in the two flavour theory that should be used for quoting and comparing
results rather than those expressed in physical units
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Gell-Mann–Oakes–Renner relation [Engel et al. 14]

The distinctive signature of SSB is the agree-

ment between ρ̃ and the slope of M2
πF

2
π/2

with respect to m in the chiral limit

On the same set of configurations by fitting the
data with NLO (W)ChPT for Mπ < 400 MeV

[ΣMS

GMOR(2GeV)]1/3 = 263(3)(4)MeV
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The dimensionless ratios

[ΣRGI]1/3/F = 2.77(2)(4) , ΛMS/F = 3.6(2)

are “geometrical” properties of the theory. They can be directly compared with your
preferred approximation/model

For instance a large-Nc computation plus model assumptions give [Armoni et al. 06]

[ΣRGI]1/3

ΛMS
= 1.43

[ Nc

2π2
K̃
]1/3

K̃ = 1 +O(1/Nc)

The above lattice measures give [ΣRGI]1/3/ΛMS = 0.77(4) =⇒ K̃1/3 = 1.01(5)
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Results for Nf = 2 + 1 + 1 [Cichy et al. 13]

Twisted-mass QCD

∗ a = 0.061–0.086 fm

∗ m = 9–45 MeV

∗ M = 50–110 MeV

∗ M =
√
Λ2 +m2

Σ

µ

β
β
β

Σ

As for the Nf = 2 theory, from the average slope of the mode number with respect
to M in the region 50 ≤ M ≤ 110 MeV, and by extrapolating linearly in m

r0[Σ
MS

BK(2GeV)]1/3 = 0.680(20)(21)

where the residual M -dependence is accounted for in the systematic error

No significant dependence on the strange and the charm quark mass is seen
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Outline

Banks–Casher mechanism:

∗ Spectral density and the mode number

∗ The density in QCD Lite

∗ First results with Nf =2+1+1 flavours

Witten–Veneziano mechanism:

∗ Definition of the topological susceptibility from the gradient flow

∗ Recent numerical results in the Yang–Mills theory

∗ Universality tests

Topological susceptibility in QCD

∗ Numerical results

Conclusions and outlook
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Definitions of the topological susceptibility on the lattice

Three families of definitions of χ ultraviolet finite, unambiguous and satisfying AWIs

From a Ginsparg–Wilson Dirac operator
[Neuberger 97; Hasenfratz 98; Lüscher 98; LG, Rossi, Testa, Veneziano 01; LG, Rossi, Testa 04; Lüscher 04]

χ
N

= a4
∑

x

⟨q
N
(x)q

N
(0)⟩ q

N
(x) = −

1

2a3
Tr

[
γ5D(x, x)

]

From spectral projectors acting on Dirac fields [LG, Lüscher 09]

χ
P
=

⟨Tr{PM}⟩
V

⟨Tr{γ5PM}Tr{γ5PM}⟩
⟨Tr{γ5PMγ5PM}⟩

From the Yang–Mills gradient flow [Lüscher 10]

χt
L
= a4

∑

x

⟨qt
L
(x)qt

L
(0)⟩ , qt

L
(x) =

1

32π2
ϵµνρσtr

[
Gµν(x)Gρσ(x)

]
(t > 0)

All of them are in the same universality class
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Universality of the continuum limit of χt
L

(I) [Cè et al. 15; Cè Fri 17th]

In the continuum to all orders in perturbation theory [Lüscher 98, 00]

⟨qt(x)O(y)⟩ = ⟨qt=0(x)O(y)⟩+ ∂ρ

∫ t

0
dt′⟨wt′

ρ (x)O(y)⟩ (x ̸= y)

where wt′
ρ is a dimension-5 gauge-invariant pseudovector field. Since there are no

local composite fields of dimension d < 5 with the same transformation properties

⟨qt=0(x)O(y)⟩ ≡ lim
t→0

⟨qt(x)O(y)⟩ (x ̸= y)

The small-t expansion of the charge density is of the form

⟨qt(x)O(y)⟩ = ⟨qt=0(x)O(y)⟩+O(t) (x ̸= y)

with no divergences when t → 0
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Universality of the continuum limit of χt
L

(II) [Cè et al. 15; Cè Fri 17th]

Let us consider in the continuum the correlator

⟨qt=0(0)P51(z1)S12(z2) . . . S45(z5)⟩

in which non-integrable short-distance singularities can arise only when (same for Pij )

qt=0(x)Sij(0)
x→ 0−−−→ c(x)Pij(0) + . . .

where c(x) diverges as |x|−4 when |x| → 0.

Being the leading short-distance singularity in this product of fields, c(x) can be

computed in perturbation theory. Again to all orders (y ̸= 0, y ̸= x)

⟨qt=0(x)Sij(0)O(y)⟩ = ⟨qt(x)Sij(0)O(y)⟩ − ∂ρ

∫ t

0
dt′⟨wt′

ρ (x)Sij(0)O(y)⟩

which implies that the Wilson coefficient is of the form

c(x) = ∂ρuρ(x)

and thus it does not contribute to the fully integrated correlation function
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Universality of the continuum limit of χt
L

(III) [Cè et al. 15; Cè Fri 17th]

Since there are no other d ≤ 4 gauge-invariant pseudoscalar operators

lim
a→0

Zq a
4
∑

x

⟨qt
N
(0) qt=0

N
(x)⟩ = finite (t > 0)

When the density at t = 0 is replaced by its density-chain expression

a4
∑

x

⟨qt
N
(0) qt=0

N
(x)⟩ = −m5a20

∑

z1,...,z5

⟨qt
N
(0)P

51
(z

1
)S

12
(z

2
) . . . S45(z5)⟩

the r.h.s. is finite as it stands when t > 0

This in turn implies that Zq = 1, and therefore

lim
a→0

⟨qt=0
N

(0) qt=0
N

(x)⟩ = ⟨qt=0(0) qt=0(x)⟩ (x ̸= 0)

The field qt=0(x) is the one appearing in the singlet AWIs when fermions are included
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Universality of the continuum limit of χt
L

(IV) [Cè et al. 15; Cè Fri 17th]

The absence of short-distance singularities on r.h.s. and small-t expansion lead to

lim
a→0

a20
∑

z1,...,z5

⟨qt=0
N

(0) . . . S45(z5)⟩ = lim
t→0

lim
a→0

a20
∑

z1,...,z5

⟨qt
N
(0) . . . S45(z5)⟩

which can be re-written as

lim
a→0

a4
∑

x

⟨qt=0
N

(x) qt=0
N

(0)⟩ = lim
t→0

lim
a→0

a4
∑

x

⟨qt
N
(x) qt=0

N
(0)⟩

By using the small-t expansion again, and by remembering that the susceptibility is
t-independent for t > 0

lim
a→0

a4
∑

x

⟨qt
N
(x) qt

N
(0)⟩ = lim

a→0
a4

∑

x

⟨qt=0
N

(x) qt=0
N

(0)⟩

Since qt
N
(x) and qt

L
(x) have the same asymptotic behaviour in the classical

continuum limit, at positive flow-time [Lüscher 10; Lüscher, Weisz 11]

lim
a→0

a4
∑

x

⟨qt
L
(x) qt

L
(0)⟩ = lim

a→0
a4

∑

x

⟨qt=0
N

(x) qt=0
N

(0)⟩ (t > 0)
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Numerical computations in the Yang–Mills theory (I)

The GW definition gives

r40χ
YM = 0.059± 0.003 [Del Debbio et al. 04]
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Numerical computations in the Yang–Mills theory (I)

The GW definition gives

r40χ
YM = 0.059± 0.003 [Del Debbio et al. 04]

A (modified) projector definition leads to

r40χ
YM = 0.049± 0.006

[Cichy et al. 15; Ottnad Thu 16th]
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Numerical computations in the Yang–Mills theory (I)

The GW definition gives

r40χ
YM = 0.059± 0.003 [Del Debbio et al. 04]

A (modified) projector definition leads to

r40χ
YM = 0.049± 0.006

[Cichy et al. 15; Ottnad Thu 16th]

The Wilson-flow definition gives

r40χ
YM = 0.0544±0.0018 [Cè et al. 15; Cè Fri 17th]
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r 04 χ
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GW  s=0.0 (DGP 04)
Spec. Projector (LP 10)
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Wilson Flow (LP 10)
Wilson Flow (Chowdhury et al. 14)
Wilson Flow (Ce’ et al. 15)

From an unsolved problem to a precise universality test!

The Wilson-flow definition is orders of magnitude cheaper than the others, and
discretization effects are mild. The preferred choice in the Yang–Mills theory
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Numerical computations in the Yang–Mills theory (II) [Cè et al. 15; Cè Fri 17th]

Given the statistical precision of χ that can be
easily reached with the Wilson-flow, “the all-
time favorite r0” needs to be replaced by t0 or
analogous definitions [Sommer 13]

By restricting the linear fit to three points

t20χ
YM = (6.67± 0.07) · 10−4

a precision almost 3 times better than by using
the present best determination of r0

By computing χYM
t /χYM the correlations

among data reduce errors to 0.1–1.0‰

By extrapolating quadratically in a2/t0 the
intercepts are all compatible with 1

All those numerical results are consistent with the conceptual progress made
over the last decade. No signs of non-universal behaviour in the continuum limit

of χYM (properly) defined on the lattice
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Higher cumulants of the topological charge distribution

Vacuum energy and charge distribution are

e−F (θ) = ⟨eiθQ⟩, PQ =

∫ π

−π

dθ

2π
e−iθQe−F (θ)

Their behaviour is a distinctive feature of the
configurations that dominate the path integr.

Large Nc predicts [’t Hooft 74; Witten 79; Veneziano 79]

⟨Q2n⟩con
⟨Q2⟩

∝
1

N2n−2
c

Various conjectures. For example, dilute-gas
instanton model gives [’t Hooft 76; Callan et al. 76; . . . ]

F Inst(θ) = −V A{cos(θ)− 1}

⟨Q2n⟩con
⟨Q2⟩

= 1
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Higher cumulants of the topological charge distribution

Vacuum energy and charge distribution are

e−F (θ) = ⟨eiθQ⟩, PQ =

∫ π

−π

dθ

2π
e−iθQe−F (θ)

Their behaviour is a distinctive feature of the
configurations that dominate the path integr.

Lattice computations give

⟨Q4⟩con
⟨Q2⟩

= 0.30± 0.11 Ginsparg–Wilson

= 0.233± 0.045 Wilson Flow

i.e. support large Nc and rule out a dilute
gas of instantons

The topological charge distribution is deter-
mined by the NP quantum fluctuations of Q
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Outline

Banks–Casher mechanism:

∗ Spectral density and the mode number

∗ The density in QCD Lite

∗ First results with Nf =2+1+1 flavours

Witten–Veneziano mechanism:

∗ Definition of the topological susceptibility from the gradient flow

∗ Recent numerical results in the Yang–Mills theory
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Topological susceptibility in QCD
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Topological susceptibility in QCD

In the presence of SSB with Nf degenerate
light flavours

χ =
Σ

Nf
m+O(m2)

which implies a significant suppression with
respect to the YM theory

[Fukaya et al. 14; Fukaya on Tue 14th]

Nf =2+1
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Topological susceptibility in QCD

In the presence of SSB with Nf degenerate
light flavours

χ =
Σ

Nf
m+O(m2)

which implies a significant suppression with
respect to the YM theory

[Cichy, Garcia-Ramos, Jansen 13]
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Topological susceptibility in QCD

In the presence of SSB with Nf degenerate
light flavours

χ =
Σ

Nf
m+O(m2)

which implies a significant suppression with
respect to the YM theory

Being a pure gluonic operator, the slope of χ
is a measurement a posteriori of the number
of flavours simulated

χ is an expensive quantity to be computed

∗ long autocorrelation

∗
∆χ

χ
=

√
2

Nconf
+O

(
1

V

)

O(1000) independent configurations are

needed for a precision of ∼ 5%. Not competitive
to extract Σ

[Cichy, Garcia-Ramos, Jansen 13]
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[Bruno, Schaefer, Sommer 14]
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Topological susceptibility in QCD

In the presence of SSB with Nf degenerate
light flavours

χ =
Σ

Nf
m+O(m2)

which implies a significant suppression with
respect to the YM theory

In general no reason for χ to vanish in the
chiral limit at finite lattice spacing

t21χ = ct1M
2
π + b

a2

t1

a LO (W)ChPT functional form which fits well
data within (large) statistical errors [Bruno et al. 14]

By taking at face value the result of the fit

c = 2.8(5) · 10−3, I get Nf = 2.06± 0.38.
Error still large but the result is encouraging

[Cichy, Garcia-Ramos, Jansen 13]
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Conclusions

An impressive global (lattice) community effort to reach a precise quantitative

understanding of the behaviour of QCD in the chiral regime (Σ, F, l̄3, l̄4, . . . )
from first principles

The spectral density of the Dirac operator in
the continuum and chiral limits is ̸= 0 at the
origin. The rate of condensation explains the
bulk of the pion mass up to Mπ ≤ 500 MeV

The topological susceptibility defined with the
gradient flow satisfies the AWIs in the
continuum limit. It is the right quantity to be
inserted in the Witten-Veneziano formula

All numerical results for χYM are consistent
with the conceptual progress made over the
last decade. A percent precision reached.
Universality is at work if χ is (properly) defined
on the lattice!
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Conclusions

An impressive global (lattice) community effort to reach a precise quantitative

understanding of the behaviour of QCD in the chiral regime (Σ, F, l̄3, l̄4, . . . )
from first principles

The spectral density of the Dirac operator in
the continuum and chiral limits is ̸= 0 at the
origin. The rate of condensation explains the
bulk of the pion mass up to Mπ ≤ 500 MeV

In full QCD χ shows the expected suppres-
sion with respect to its value in the Yang–Mills
theory. Within the (so far) large errors, results
are compatible with LO ChPT
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Our theoretical femtoscope can explore the chiral regime of QCD with higher and
higher precision. This was just a dream only 10-15 years ago!
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BACKUP SLIDES
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The Witten–Veneziano mechanism in a nutshell (I) [Witten 79; Veneziano 79]

By defining

χ(p) =

∫
d4x e−ipx⟨q(x)q(0)⟩ , q(x) =

1

32π2
ϵµνρσtr

[
Fµν(x)Fρσ(x)

]

in the chiral limit the integrated anomalous singlet AWI guarantees

lim
m→0

χ(0) = − lim
m→0

m

Nf

∫
d4x ⟨P 0(x)q(0)⟩ = 0

only if χ(0) is defined so to satisfy the AWI (crucial!)

By expanding in 1/Nc

χ(p) = χ0(p) + χ1(p) + χ2(p) + . . .

Non-perturbatively χYM = χ0(0) ̸= 0 even if it vanishes order by order in PT

How is it possible that terms sub-leading in Nf/Nc cancel the leading one ?

L. Giusti – Lattice 2015 - Kobe July 14
th 2015 – p. 29/32



The Witten–Veneziano mechanism in a nutshell (II) [Witten 79; Veneziano 79]

The Euclidean χ(p) satisfies a three-times subtracted dispersion relation

χ(p) = b1 + b2p2 + b3(p2)2 −
R2

η′

p2 +m2
η′

+ (p2)3
∫ ∞

M2

ρ(t)

(t+ p2)t3
dt

For p2 → 0, the condition χ(0) = 0 implies

b1 =
R2

η′

m2
η′

with R2
η′ =

F 2
η′m4

η′

2Nf
=⇒

F 2
η′M2

η′

2Nf

∣∣∣∣∣

m=0

1
Nc

=0

= χYM

∣∣∣
1

Nc
=0

Note that in the limit 1/Nc → 0:

1. U(1)A is restored

2. η′ is a Nambu–Goldstone boson =⇒ mη′ = 0

3. At first order in 1/Nc, m2
η′ = O(1/Nc)

ChPT with a simultaneous expansion in powers of p2 and 1/Nc

[Coleman, Witten 80; Di Vecchia et al. 81; Kaiser, Leutwyler 00]
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Witten–Veneziano in full QCD

r40
F 2
η′

2Nf
(M2

η +M2
η′ − 2M2

K) = 0.047± 3± 11
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Topological susceptibility in QCD

The HISQ action consists of a Fat7 smear-
ing of the gauge links, then a projection of each
smeared link onto a unitary matrix, followed by an
“asq” smearing with twice the Lepage term and
including the Naik term, a third nearest-neighbor
coupling.

Several of the largest ensembles were run with
the RHMD algorithm, which is identical to the
RHMC algorithm, except that the accept-reject
step at the end of each trajectory is omitted.

In the continuum limit the definition of χ suffers
from ultraviolet singularities that require regular-
ization. Such complications are unimportant at
our range of lattice spacings

[Bazavov et al. 12]
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