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Signal/noise ratio: nucleon
I

The variance of the nucleon propagator

CN(y0, x0) = hWN(y0, x0)i / e�MN |y0�x0|

when |y0 � x0| ! 1 goes as [Parisi 84; Lepage 89]

�2
N(y0, x0) / e�3M⇡|y0�x0|

I
Signal/noise ratio decreases exponentially with

time distance

n
cnf

C2
N

�2
N

/ n
cnf

e�(2MN�3M⇡)|y0�x0|

At the physical point 2MN � 3M⇡ ' 7.4 fm�1
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I
Time distances of 1 fm or so are state of the art. For precise and accurate determinations

of MN , gA,. . . , hxiu�d , . . . , ChPT suggests that ⇠1.5 fm and ⇠2.5 fm are needed for

two- and three-point functions respectively (see Bär’s and Chang’s plenary talks)

[Tiburzi 09, 15; Bär 15-17; Hansen, Meyer 16]



Signal/noise ratio: main limitation in many computations

I
Vector-vector correlator (See Lehner’s plenary talk)

n
cnf

C2
⇢

�2
⇢

/ n
cnf

e�2(M⇢�M⇡)|y0�x0|

if m⇢ lighter than two-pion states. Relevant for

⇢, g � 2, screening masses at finite T ,. . .

[Della Morte et al. 17]
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Non-zero momentum correlators
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I
Static and static-light correlators [Lepage 92]
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relevant for B!l⌫,B!⇡(K)l⌫,B!K(K⇤)ll , . . .

[Della Morte et al. 17]
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I
Similar or worse problem for many other correlators, e.g. ⌘0

, glueballs, disconnected, . . .



Multi-level integration
[Parisi, Petronzio, Rapuano 83; Lüscher, Weisz 01; . . . ; Meyer 02; LG, Della Morte 08 10, . . . ]

I
If also the observable can be

factorized
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0
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I
Two-level integration:

- n0 configurations U⇤1

- n1 configurations U⇤0 and U⇤2 for each U⇤1

I
If hh·ii⇤i

can be computed efficiently with a statistical error comparable to its central value,

then the prefactor in the signal/noise ratio changes as

n
cnf

! n0n
2
1

at the cost of generating approximatively n0n1 level-0 configurations
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I
With more active blocks, at the cost of approximatively n0n1 level-0 configurations,

n
cnf

! n0n
n
block

1

and the gain increases exponentially with the distance since n
block

/ |y0 � x0|. For the

same relative accuracy of the correlator, the computational effort would then increase

approximatively linearly with the distance



Toward (the dream of) simulating large lattices

I
Simulating large lattices by updating sub-lattices independently (see Lüscher’s plenary talk)

I
For example the lattices

320

4, a = 0.05 fm, L = 16 fm

24 ⇥ 640

3, a = 0.05 fm, L = 32 fm, T = 164 MeV

can split in 4096 48

4
and 24 ⇥ 48

3
overlapping blocks

I
This would open new perspectives for:

- Multi-baryon states

- Multi-particle scattering states

- Form factors at small momenta

- Gas of many hadrons at finite T

- . . . . . .

I
Reduced communications on parallel computers
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Signal/noise ratio: the rôle of pions
I

By defining Q = �5D and

W⇡(y0, x) =
X

~y

Tr

n

Q�1(y , x)[Q�1(y , x)]†
o

at large time distances the pion propagator and its variance goes as

C⇡(y0, x0) = hW⇡(y0, x)i / e�M⇡|y0�x0| �2
⇡(y0, x0) / e�2M⇡|y0�x0|

and therefore the signal/noise ratio is (almost) constant

I
Indeed, when |y � x | ! 1, numerical simulations confirm that

Tr

n

Q�1(y , x)[Q�1(y , x)]†
o

/ e�M⇡|y�x|

for every background field in the representative ensemble. The size of each quark line,

exp{�M⇡ |y � x |/2}, is responsible for large fluctuations in other connected correlators

(See also Grabowska, Kaplan, Nicholson 13; Kaplan 13; Wagman, Savage 17)

I
The suppression of the propagator with the distance between source and sink, however,

is also the clue for the solution . . . . . .



Domain decomposition: quark propagator

I
When x , y 2 ⇤0, how Q�1(y , x) depends

on the gauge field in the block ⇤2 ?
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Domain decomposition: quark propagator

I
When x , y 2 ⇤0, how Q�1(y , x) depends

on the gauge field in the block ⇤2 ?

I
The Hermitian Wilson-Dirac operator can

be decomposed as [Lüscher 03]

Q =
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By defining the Schur complement as usual

S� = Q� � Q@� Q
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�⇤ Q@�⇤

and by choosing � = ⇤2 and �⇤ = ⌦⇤
0 , the inverse can be written as

Q�1 =

0

@

. . . . . .

. . . Q�1
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0
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0
Q⇤1,2S

�1
⇤2

Q⇤2,1Q
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0

1

A

I
The dependence from the gauge field in ⇤2 stems from the second contribution in the 22

element, a term which is suppressed /e�M⇡�
for large values of the thickness � of ⇤1



Domain decomposition: quark propagator

I
What about the gauge-field dependence

of Q�1(y , x) when x 2 ⇤0 and y 2 ⇤2 ?
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Domain decomposition: quark propagator
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Gauge-field dependence is factorized (hence in hadron correlators too)
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Let us understand it better. . . . . .
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I
The exact propagator for x 2 ⇤0 and y 2 ⇤2 is given by [Lüscher 16; Cè, LG, Schaefer 17]
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and analogously for the other components
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The exact propagator for x 2 ⇤0 and y 2 ⇤2 is given by [Lüscher 16; Cè, LG, Schaefer 17]
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and analogously for the other components

I
Full gauge dependence factorized. Built by quarks looping around the boundaries, each

loop bringing a suppression factor / e�M⇡�
. Merit of SAP with overlapping domains



A crucial test on the spectrum of !

I
Wilson glue with two-flavours of O(a)-
improved Wilson quarks

� = 5.3 , c
SW

= 1.90952 , k = 0.13625

(T/a) ⇥ (L/a)3 = 64 ⇥ 32

3 , a = 0.065 fm

n
cnf

= 200 aM⇡ = 0.1454 , M⇡ = 440 MeV

I
Computed 60 eigenvalues with largest norm

! vi = �i vi
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12 0.1710 0.1692 0.0453 0.3193

16 0.1072 0.0951 0.0284 0.1977
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For the matrix (1 � !) the spectral gap ✏ is large (as expected). For � = 12a ⇠ 0.8 fm

is ✏ ⇠0.7 or so. The Neumann series converges very fast!
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Domain decomposition: determinant

I
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decomposed)
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and therefore

det Q =
1

det Q�1
�⇤ det [P� Q�1 P�]

⇤0 ⇤1 ⇤2

@⇤2@⇤⇤
2@⇤0 @⇤⇤

0

⌦⇤
0

⌦⇤
1

I
By first choosing �⇤ = ⇤1 and � = ⇤0 [ ⇤2, and then iterating once more in �

det Q =
1

det Q�1
⇤1,1

det

h

P⇤2 Q�1
⌦⇤

1
P⇤2

i

det

⇥

P⇤0 Q�1 P⇤0

⇤

I
Determinant factorizes in 3 terms, but last factor still depends on gauge field everywhere
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Domain decomposition: determinant

I
By remembering again that

P⇤0 Q�1 P⇤0 = P⇤0 Q�1
⌦⇤

0
P⇤0+. . .

is useful to rewrite the det as

⇤0 ⇤1 ⇤2

⌦⇤
0

⌦⇤
1

det Q =
1

det Q�1
⇤1,1

det

h

P⇤0 Q�1
⌦⇤

0
P⇤0

i

det

h

P⇤2 Q�1
⌦⇤

1
P⇤2

i

det (1 � !)

I
For the first 3 terms factorization of the gauge dependence achieved, e.g. for Nf = 2

1

det

h

P⇤2 Q�1
⌦⇤

1
P⇤2

i2 =

Z

[d�2d�†
2]e

�|P⇤2Q
�1
⌦⇤
1
�2|2

I
The matrix ! is the only direct coupling between the gauge field in ⇤0 and ⇤2



Multi-boson block factorization
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Again the matrix

! = P@⇤0Q
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0
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I
By writing also in this case

det (1 � !) =
1

det[(1 � !)�1]



Multi-boson block factorization
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Again the matrix

! = P@⇤0Q
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I
We can expand again (1 � !)�1

in series [uk = ei
2⇡k
N+1

]

[Lüscher 93; Borici, de Forcrand 95; Jegerlehner 95]

det (1 � !)

det [1 � RN+1(!)]
=

1

det[PN(!)]
/

N/2
Y

k=1
det

�1�(uk � !)†(uk � !)
 

by choosing PN(!) =
N
X

n=0
!n

so that |RN+1(!)| = |!N+1|  (1 � ✏)N+1

I
But the gauge fields in ⇤0 and ⇤2 still both enter !. . . . . .



Multi-boson block factorization
I

By defining the matrix

Wz =

0

@

z P@⇤0 P@⇤0Q
�1
⌦⇤

0
Q⇤1,2

P@⇤2Q
�1
⌦⇤

1
Q⇤1,0 z P@⇤2

1

A

we can re-write

⇤0 ⇤1 ⇤2

@⇤2@⇤⇤
2@⇤0 @⇤⇤

0

⌦⇤
0

⌦⇤
1

1

det[PN(1 � !)]
/

N/2
Y

k=1
det

�1(W †p
uk

Wp
uk )



Multi-boson block factorization

I
By defining the matrix

Wz =

0
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z P@⇤0 P@⇤0Q
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0
Q⇤1,2

P@⇤2Q
�1
⌦⇤
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the auxiliary multi-boson fields can be introduced on both boundaries so that for Nf = 2

[Lüscher 93; Borici, de Forcrand 95; Jegerlehner 95]

1

det[PN(1 � !)]2
/

N
Y

k=1

⇢

Z

[d�kd�†
k ]e

�|Wp
uk

�k |2
�

where, by defining ⌘k = P@⇤0�k and ⇠k = P@⇤2�k ,

|Wz�k |2 = |P@⇤0Q
�1
⌦⇤

0
Q⇤1,2⇠k |2 + |P@⇤2Q

�1
⌦⇤

1
Q⇤1,0⌘k |2 + z(⇠k ,Q⇤2,1Q

�1
⌦⇤

0
⌘k ) + . . .

I
The dependence of the full bosonic action from the links in ⇤0 and ⇤2 is thus factorized.

The (small) direct coupling, due to quarks looping up to N times around the boundaries,

is replaced by a block-local interaction of links with N/2 multi-boson fields per flavour



Multi-level integration with fermions

I
A generic scheme for multi-level integration is:

hOi =
hO WNiN
hWNiN

=
hO

fact

iN
hWNiN

+
hO WN � O

fact

iN
hWNiN

where O
fact

is a (rather precise) approximation of O, and hO
fact

iN is computed by

multi-level integration with (a small number of) N multi-boson fields

I
For Nf = 2, the reweighting factor is

WN = det{1 � RN+1(1 � !)}2 =

R

[d⌘][d⌘†]e�|(1�RN+1)
�1⌘|2

R

[d⌘][d⌘†]e�⌘†⌘

where RN+1(1 � !) = !N+1

I
Given the large spectral gap of (1 � !), and depending on the target statistical error,

WN can be neglected with N ⇠ 10 or so. Not a big number!

I
In practice � ⇠ 0.5 fm or so may be already sufficient for ! to be suppressed enough
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Goal:

{detQ[U]}2 =

Z

D� . . . exp
n

�S0[U⌦⇤
0
, . . . ] � S1[U⇤1 , . . . ] � S2[U⌦⇤

1
, . . . ]

o

I
Motivation

I
How:

I
Numerical tests

- domain decomposition

- multi-boson

I
Conclusions & outlook



Correlation functions of gluonic operators

I
We have computed the gluonic fields

ē(x0) =
1

4

X

~x

F a
µ⌫(x)F

a
µ⌫(x)

q̄(x0) =
1

64⇡2

X

~x

✏µ⌫⇢� Fa
µ⌫(x)F

a
⇢�(x)

and the expectation values

Ce(x0) =
1

L3 hē(x0)i

Cqq(y0, x0) =
1

L3 hq̄(y0) q̄(x0)i

I
Blocking with two level integration in ⇤0 and ⇤2

⇤0 : x0 2 [0, 23a] , ⇤1 : x0 2 [24a, 35a]

⇤2 : x0 2 [36a, 63a] , a = 0.065 fm , N = 12

the gain turns out to be the best possible one

Nf = 2 n
cnf

= 200 n0 = 32
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Multi-level for nucleon two-point function
I

Wilson glue with quenched Wilson quarks

� = 6.0 , k = 0.1560 , (T/a)⇥(L/a)3 = 64⇥24

3

a = 0.093 fm aM⇡ = 0.215 , M⇡ = 455 MeV

n
cnf

= 1000 , n0 = 50 , n1 = 20

I
The Wick contraction is decomposed as

WN(y0, x0) = W fact

N (y0, x0) +Wr
N(y0, x0)

0 10 20 30 40 50 60
y0/a

0.1

1
σN

F/σN
σN

R/σN

where W fact

N is an approximation built from the factorized quark propagator
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Multi-level for nucleon two-point function
I

Wilson glue with quenched Wilson quarks

� = 6.0 , k = 0.1560 , (T/a)⇥(L/a)3 = 64⇥24

3

a = 0.093 fm aM⇡ = 0.215 , M⇡ = 455 MeV

n
cnf

= 1000 , n0 = 50 , n1 = 20

I
The Wick contraction is decomposed as

WN(y0, x0) = W fact

N (y0, x0) +Wr
N(y0, x0)

0 10 20 30 40 50 60
y0/a

0.1

1
σN

F/σN

σN
R/σN

σN
F, mlv/σN

σN
I, mlv/σN

where W fact

N is an approximation built from the factorized quark propagator

I
At large time distances the multi-level works at its best. The (signal/noise)

2
is proportional

to n2
1 (as opposed to n1) until it hits the green curve

I
Refined definitions of W fact

N (y0, x0) are desirable to make computation even cheaper . . .

I
For similar results in other channels (vector-vector, pion with

~p 6= 0,. . . ) see

(M. Cè parallel talk on Thursday)
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I
The effective quark interaction among the gauge field at distant points can be factorized

out in (L)QCD by exploiting a decomposition of the space-time in overlapping domains

I
By introducing (a small number of) multi-boson auxiliary fields, the resulting action is

local in the block scalar and gauge fields and can be efficiently simulated

{detQ[U]}2 =

Z

D� . . . exp
n

�S0[U⌦⇤
0
, . . . ] � S1[U⇤1 , . . . ] � S2[U⌦⇤

1
, . . . ]

o

I
When combined with the factorization of Wick contractions, these results pave the way for

multi-level integration in the presence of fermions, opening new perspectives in LGT
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I
The computations of many interesting quantities are expected to profit: baryons

(gA, . . . , < x >u�d ), g � 2, leptonic, semi-leptonic and hadronic decays, ⇢ ,⌘0
, . . . . . .

I
Domains need neither to have a particular shape nor to be connected. What matters is the

minimum distance between ⇤0 and ⇤2. 4D decomposition attractive for large volumes

I
Two key ingredients: locality of the Dirac operator and the fast decrease of its inverse with

the distance between sink and source. The factorization may, therefore, be applicable to

very different theories with fermions if they enjoy these very basic properties


