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» Goal:

{det Q[U]}2 = /qu..exp{fso[u%,...] ~ SiUn,. -]~ SalUa;. - 1}

» Motivation > How: » Numerical tests

- domain decomposition
- multi-boson

» Conclusions & outlook



Signal/noise ratio: nucleon

» The variance of the nucleon propagator
—M, —
Cr(y0, x0) = (Wi (y0, x0)) o< e~ Mool
when |yo — xo| — 00 goes as [Parisi 84; Lepage 89]
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» Time distances of 1 fm or so are state of the art. For precise and accurate determinations

of My, ga,- -, (X)u—d, ..., ChPT suggests that ~1.5 fm and ~2.5 fm are needed for

two- and three-point functions respectively (see Bér's and Chang'’s plenary talks)
[Tiburzi 09, 15; Bér 15-17; Hansen, Meyer 16]



Signal /noise ratio: main limitation in many computations

[Della Morte et al. 17]

» Vector-vector correlator (See Lehner's plenary talk) Gleo) K o) /my =
5 Y E—
ncnpr —2(M,—Mq)|yo— . TIHU
) »—Mx)lyo—xo| 0.005 1y 1 1
o2 X Nenf € ol qm‘?‘ﬁ* !
p At
if m, lighter than two-pion states. Relevant for " )
p, & — 2, screening masses at finite T,. .. “HT
- i
] T




Signal /noise ratio: main limitation in many computations

[Della Morte et al. 17]

» Vector-vector correlator (See Lehner's plenary talk) Gl R/ .
5 Y E—
Nenf C _ _ _ 0.005 Ln” TIWI
P enp € 2(Mp =Mz )lyo—ol M
o3 o i
if m, lighter than two-pion states. Relevant for " e
P oo 2 Ny
p, & — 2, screening masses at finite T,. .. “HT
N it
» Non-zero momentum correlators o
- R :
Nenf 5
T’”’ & Nenp e 2(En(P)—=Mx)lyo—xo
P [Della Morte et al. 12]
. . 2—2
relevant for semi-leptonic decays, baryons, ... 1 4
0.75 [
L e S i
x| | |
- .--.:H::}IHH”H

o : : : :




Signal /noise ratio: main limitation in

» Vector-vector correlator (See Lehner's plenary talk)

2
ncnfC _ _ —
e ]
9

if m, lighter than two-pion states. Relevant for

p, & — 2, screening masses at finite T,. ..

» Non-zero momentum correlators
2

n, fC =

T o gt e 2ER ()= M) lyo ol

o2 .
,p

relevant for semi-leptonic decays, baryons, ...

many computations

[Della Morte et al. 17]

O ——

ol s o
e i
7 piii—

n‘ . Rt
\ o

[Della Morte et al. 12]

2=4




Signal /noise ratio: main limitation in many computations

[Della Morte et al. 17]

» Vector-vector correlator (See Lehner's plenary talk) G R o)/ -
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if m, lighter than two-pion states. Relevant for L,

p, & — 2, screening masses at finite T,...

» Non-zero momentum correlators
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relevant for semi-leptonic decays, baryons, ...

» Static and static-light correlators [Lepage 92] 12 ‘ HHHHHHHH
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» Similar or worse problem for many other correlators, e.g. n’, glueballs, disconnected, ...



Multi-level integration

[Parisi, Petronzio, Rapuano 83; Liischer, Weisz 01; ...; Meyer 02; LG, Della Morte 08 10, ...]

» If also the observable can be

factorized ; ;
O[U] = Oo[Ung] x Oa[Uay]
then 3 3
(O[U]) = { (Oo[UngIhne  (OalUaz1)na) S — = -
where

1 —So[Uqx
(OolUngIno = 5~ [ DUng e 5] 0 Ugs
0

» Two-level integration:

- ng configurations Up,

- ny configurations Uy, and Uy, for each Up,

> If {(-))a, can be computed efficiently with a statistical error comparable to its central value,
then the prefactor in the signal/noise ratio changes as
2
Nenf — Nony

at the cost of generating approximatively non; level-0 configurations



Multi-level integration

[Parisi, Petronzio, Rapuano 83; Liischer, Weisz 01; ...; Meyer 02; LG, Della Morte 08 10, ...]

» If also the observable can be

factorized 3 3
O[] = OolUns] x OalUg]
then ‘ ‘
(O1U1) = ((OolUng nox (Oallnglhes)
where
(ol Dhna = 5= = [ DU, e 15! 05lug]

» With more active blocks, at the cost of approximatively ngny level-0 configurations,

Nent — Nony Nblock

and the gain increases exponentially with the distance since npjock o |yo — xo|. For the
same relative accuracy of the correlator, the computational effort would then increase

approximatively linearly with the distance



Toward (the dream of) simulating large lattices
» Simulating large lattices by updating sub-lattices independently (see Liischer’s plenary talk)

» For example the lattices
| . BN L |
320%, 2=0.05fm, L=16fm F aF 7

24 % 6403, a2=0.05fm, L=32fm, T =164 MeV

| Ll BN e |
. . . _ F aF 1%
can split in 4096 48" and 24 x 48> overlapping blocks E A EFE 3
el b .4
» This would open new perspectives for: EFTE ErTE
F aF 7
- Multi-baryon states E 4 EFE 32
e ud b .4
- Multi-particle scattering states
) g el W L
- Form factors at small momenta =[]= =[]=
el b .4

- Gas of many hadrons at finite T

» Reduced communications on parallel computers
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Signal/noise ratio: the réle of pions

» By defining Q = 5D and
Wa(yo,x) = > Tr{Q@ (v, 0[Q (v, '}
y

at large time distances the pion propagator and its variance goes as

Cr(y0,%0) = (W (y0, x)) ox e~ Mrlyo—xl o2 (yo, x0) oc e 2Mnlvo—xol

and therefore the signal/noise ratio is (almost) constant

» Indeed, when |y — x| — oo, numerical simulations confirm that

T { @71, 1@ (v, )11 } o e~ Ml =]

for every background field in the representative ensemble. The size of each quark line,

exp{—Mx|y — x|/2}, is responsible for large fluctuations in other connected correlators
(See also Grabowska, Kaplan, Nicholson 13; Kaplan 13; Wagman, Savage 17)

» The suppression of the propagator with the distance between source and sink, however,
is also the clue for the solution



Domain decomposition: quark propagator

» When x,y € Ao, how Q~1(y, x) depends onol | oA
on the gauge field in the block Ay 7 ;

Ao

Ay
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Domain decomposition: quark propagator

» When x,y € Ao, how Q~1(y, x) depends onol i lons]  |oms] |0
on the gauge field in the block Ay 7 ‘ ‘

» The Hermitian Wilson-Dirac operator can : ‘
be decomposed as [Liischer 03] Ao ! A !

( Qr  Qor )
Q=
Qor+ Qr=

By defining the Schur complement as usual

Ay

35

Sr = Qr — Qor Q= Qor-

and by choosing ' = Az and I'* = Qf, the inverse can be written as

Q=
1 1 1 1
QQ; + Qﬂg Qn125n, Qnzs QQS

» The dependence from the gauge field in A stems from the second contribution in the 22
element, a term which is suppressed oce~M=2 for large values of the thickness A of Ay



Domain decomposition: quark propagator

» What about the gauge-field dependence on| 1 oA;| oA3 1 on.

of Q I(y,x) when x € Ag and y € A ? /w_N\

Ao ‘ A 1 Az

Q4



Domain decomposition: quark propagator

» What about the gauge-field dependence one| oA
of Q@ 1(y,x) when x € Ag and y € Ap ?

» Again DD [I = Ag and I'* = Qf]
Ao

Ay

Az

. S,\_o1 ) %
- - -1
7QQ11 Q/\:l,oSAo te

The 11 element and previous result give
s,(ol = Prny @ 1Pp, = P, Q;slp,\o +...

which together with the 21 term leads to

Q My, x) = = Q5. (V. )Qng 0 Qq () + -

Q4



Domain decomposition: quark propagator

» What about the gauge-field dependence
f Q! h Ao and Ao ? —
of @ *(y,x) when x € Ag and y € A2 / —

> Again DD [ = Ag and I'* = Q] 3

Ao Ay Az
_ h
syt 6 o
Q_l _ No 1
-1 -1
7QQ1 Q/\:l,oSAo
The 11 element and previous result give NSO M =455MeV  a=0.093 fm
N R
-1 -1 -1 W e, + exact i
S/\o = Pro Q7 Pno = Pno QQS Pro + - Lo T Asse M 8171
10 ® difference m

which together with the 21 term leads to

Q My, x) = = Q5. (V. )Qng 0 Qq () + -

» Gauge-field dependence is factorized (hence in hadron correlators too)



Domain decomposition: quark propagator

» What about the gauge-field dependence
f Q! h Ao and Ao ? —
of @ *(y,x) when x € Ag and y € A2 / —

> Again DD [ = Ag and I'* = Q]
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» Gauge-field dependence is factorized (hence in hadron correlators too)



Let us understand it better

» By introducing the matrix
_ -1 -1
w = PB/\O QQ; QALZ QQI Q/\I,O

which :

- Acts on one boundary only

Ao

oMo |

ING
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- Is suppressed (exp.) in A

- Hasfactorized field dependence
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Let us understand it better. .
» By introducing the matrix
w = Pone Qo' Qnya O Qnao

which :

- Acts on one boundary only

- Is suppressed (exp.) in A

Ao ‘ Ay ‘ Ay

- Hasfactorized field dependence

» The exact propagator for x € Ag and y € Ax
Q7 y,x) =0, (v,

and analogously for the other components

is given by [Liischer 16; C&, LG, Schaefer 17]

)Q/\1o 1_ QQ* (-, x)



Let us understand it better. ... ..

» By introducing the matrix
_ -1 -1
w = PB/\O QQ; QALZ QQI Q/\I,O

which :

- Acts on one boundary only

- Is suppressed (exp.) in A

- Hasfactorized field dependence

» The exact propagator for x € Ag and y € Az is given by [Liischer 16; Cé, LG, Schaefer 17]

QMY ) = =00 (V. ) Qe D w" Qi ()

n=0

and analogously for the other components

» Full gauge dependence factorized. Built by quarks looping around the boundaries, each

loop bringing a suppression factor < e=M=2_ Merit of SAP with overlapping domains



A crucial test on the spectrum of w

» Wilson glue with two-flavours of O(a)-

improved Wilson quarks 03

B

53, cqw = 190952, k =0.13625

(T/a) x (L/a)® =64 x 323, a=0.065fm

Neng = 200  aM, = 0.1454, M, = 440 MeV 02

» Computed 60 eigenvalues with largest norm

UJV;:(S;V;

A =12a

0.0
Re{s}

§ = exp{—M-A}

A/a 0 (max; |6;])  o(max; |d;])

max max; |d;|

8 0.3273 0.2886 0.0616
12 0.1710 0.1692 0.0453
16 0.1072 0.0951 0.0284

0.5130
0.3193
0.1977




A crucial test on the spectrum of w

A =12a
» Wilson glue with two-flavours of O(a)- 30
improved Wilson quarks
2%
B =53, cgw =190952, k =0.13625 20
15
(T/a) x (L/a)®> =64 x 323,  a=0.065 fm
10
Nenf =200 aMy; = 0.1454, M, = 440 MeV 5
0 — = =
0.05 0.10 0.15 0.20 0.25 0.30
max; |;

» Computed 60 eigenvalues with largest norm

W i =0 Vi 5 = exp{—M-A}

AJa ) (max; |6i|) o(max;|6;]) maxmax;|d;|
8 0.3273 0.2886 0.0616 0.5130
12 0.1710 0.1692 0.0453 0.3193
16 0.1072 0.0951 0.0284 0.1977

» For the matrix (1 — w) the spectral gap ¢ is large (as expected). For A = 12a ~ 0.8 fm

is € ~0.7 or so. The Neumann series converges very fast!



A crucial test on the spectrum of w

A =12a
» Wilson glue with two-flavours of O(a)-
improved Wilson quarks

B=53, cgy =1.90952, k =0.13625
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Nent = 200 aMy = 0.1454, M, = 440 McV

0.05 0.10 0.15 0.20 0.25 0.30
» Computed 60 eigenvalues with largest norm 19

W i =0 Vi 5 = exp{—M, A}

A/a é (max; |6i|) o(max;|6;]) maxmax;|d;|
8 0.3273 0.2886 0.0616 0.5130
12 0.1710 0.1692 0.0453 0.3193
16 0.1072 0.0951 0.0284 0.1977

» For the matrix (1 — w) the spectral gap ¢ is large (as expected). For A = 12a ~ 0.8 fm

is € ~0.7 or so. The Neumann series converges very fast!



Domain decomposition: determinant

» We start again from oMo | 0A;

Qr  Qor
Q=
Qor+ Qr=
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Domain decomposition: determinant

» We start again from (but LU oo |

decomposed)

I Qor Qi1 < Ss 0 >
Q= Ao
0 ! Qor+ Qr=

ING
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Domain decomposition: determinant

» We start again from (but LU 9o
decomposed)

I Qar Qr_*l < Sr 0 >
Q= Ao
0 / Qor+  Qr=

oAy 2SI

%
and therefore

1

det Q =
det Q7' det [Pr Q1 Pr]

5

» By first choosing '* = A1 and I = Ag U A2, and then iterating once more in '

det Q = !

det Q/\_f,lde" [P,\z Qg,l} P/\z]det [Prg @1 Pao]

» Determinant factorizes in 3 terms, but last factor still depends on gauge field everywhere



Domain decomposition:

» By remembering again that

Pro @1 Pag = Pag Qg{él Ppot- -

determinant

oMo | 0N oA;

Ao 3 Ay

(2%

Az

2



Domain decomposition: determinant

» By remembering again that

0 i i

. . Ao i Ay i Ao
is useful to rewrite the det as ‘ ‘

0

65

1

det Q = — - —
det Q" det [Pa, Q. Pao|det [P, Q5! P |

det (1 — w)

» For the first 3 terms factorization of the gauge dependence achieved, e.g. for Ny = 2

Pr, QT 22
/[du2dm IPra Qag 2]
det P/\ﬁ QQ P/\ﬁ

» The matrix w is the only direct coupling between the gauge field in Ag and Az



Multi-boson block factorization

» Again the matrix
_ —1 -1
w = Pyp, QQE Qnq.2 QQi Qny 0

which is also:

- similar to w

Ao

oho| i

ONG

or;

35

DA

Ay




Multi-boson block factorization

» Again the matrix

N 1 oAG OA; oA,
| |
| |
—_t
| |
) )

-1 —1
w = Pon, QQ; Qny 2 QQI Qns0

Ao

which is also: Q

- similar to w

35

» By writing also in this case
1

det(1 —w) = det(i—w)T

@



Multi-boson block factorization

» Again the matrix

—1 1
w = Pap, QQé Qni2 O Qnao
S

which is also: A n
0 1
- similar to wf :
a5 o
1
j2m
> We can expand again (1 —w)~1! in series [uy = €' V+1 |
[Liischer 93; Borici, de Forcrand 95; Jegerlehner 95]
N2
det (1 — w) 1
det ™ (ug — )t (ug — w)
det[1 — Rys1(w)]  det[Py(w)] H H J
N
by choosing Py (w) = Zw so that |Ry,1(w)| = |wNTt < (1 — )N+2

n=0

» But the gauge fields in Ag and A> still both enter w



Multi-boson block factorization

» By defining the matrix

z Pa/\o

W, = .
Pa/\z in Q/\1,o

we can re-write

“1
Pang QQ; Qhs 2

z Pap,

1

det[PN(l —

)

9o OAG DA3 22}

Ao i Ay

w)]

Az

2

N/2

0<Hdet 1(WT W)



Multi-boson block factorization
» By defining the matrix

_1 i i
zPspng  Pong QQ; Qhs 2 1 1
W, = 0 S s

1 A A
Pon, @0 Qno 2 Pon, 0 ?

*
Q(\

the auxiliary multi-boson fields can be introduced on both boundaries so that for Ny = 2
[Liischer 93; Borici, de Forcrand 95; Jegerlehner 95]

1 N R .
= LL{ [l ey

k=1
where, by defining 1y = Papg Xk and &k = Pan, Xk,
[ Waxil? = |Pong Q' Qny 2€kl% + [Pong Q. Qng o7l® + 2(€ks Qnz g Qo i) + - -
» The dependence of the full bosonic action from the links in Ag and Az is thus factorized.

The (small) direct coupling, due to quarks looping up to N times around the boundaries,
is replaced by a block-local interaction of links with N/2 multi-boson fields per flavour



Multi-level integration with fermions

> A generic scheme for multi-level integration is:

(O) — (OWN>N — <Ofact>N (OWN - Ofact>N
(Wn)n (Wn)n Wn)n

where Or,ct is a (rather precise) approximation of O, and (Og,ct ) is computed by

multi-level integration with (a small number of) N multi-boson fields

» For Nf = 2, the reweighting factor is

= 2 _ f[d"i][dUT]ef‘(lfRNH)_lnlz
WN = det{l — RN+1(1 - w)} - f[dn][dnf]e*"T"

where Ryy1(1 — w) = wN+?

» Given the large spectral gap of (1 — w), and depending on the target statistical error,
Wy can be neglected with N ~ 10 or so. Not a big number!

» In practice A ~ 0.5 fm or so may be already sufficient for w to be suppressed enough
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Correlation functions of gluonic operators

» We have computed the gluonic fields

&) = Z v (X)Fu ()

d(xo) 647 Z €uvpo F, (x)Fos(x)

and the expectation values

Clo) = 15(e00)

Caa(yo,x0) = (a(y0) G(x0))

3
» Blocking with two level integration in Ag and A;
Mo : x0 €[0,233], Ai: xp € [24a,354]
A2t xo € [36a,633], a=0.065fm, N=12

the gain turns out to be the best possible one
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| n b on, =10} n =45
0.004 L
0003 it i '”[“"‘Hull i s
% 0.002
it | yt } ‘
PO LT LY Y R
et Mt
4
Y N |




Correlation functions of gluonic operators

» We have computed the gluonic fields

B0) = 5 3 FLOIFL)
0) = gamz X e FL (3

and the expectation values

Clo) = 15(e00)

Caa(yo,x0) = (a(y0) G(x0))

3
» Blocking with two level integration in Ag and A;
Mo : x0 €[0,233] ,

A1 @ xo € [24a,354]

A2t xo € [36a,633], a=0.065fm, N=12

the gain turns out to be the best possible one
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Multi-level for nucleon two-point function

» Wilson glue with quenched Wilson quarks

B=6.0, k=01560, (T/a)x(L/a)®=64x243 13 T enes

a=0.093fm aM; =0.215, M, = 455 MeV [RRTVRES WA

nens = 1000, no =50, np =20

» The Wick contraction is decomposed as

Wi (0, x0) = Wi (y0, x0) + Wy (v0, x0)

where W,{I“C‘ is an approximation built from the factorized quark propagator



Multi-level for nucleon two-point function

» Wilson glue with quenched Wilson quarks

B=6.0, k=0.1560, (T/a)x(L/a)®=64x243
a=0.093fm aM; =0.215, M, = 455 MeV
Nent = ].0007 np = 50 5 ny =20

» The Wick contraction is decomposed as

Wi (yo,x0) =

Wi (o, x0) + Wy (o, x0)

..
" aasithasaag
anaanlt e SR
K
.
A .‘0.
.. o
., (CLN
000 g000°’

where W,{I“C‘ is an approximation built from the factorized quark propagator



Multi-level for nucleon two-point function

» Wilson glue with quenched Wilson quarks

B=60, k=01560, (T/a)x(L/a)®=64x24%> |- o,
[l o™ .'-t---
a=0.093fm aM; =0.215, M, = 455 MeV A.AAnn::2:::--%::“"‘:::::-“.
Nenf = ]-0007 no = 50 s ni =20 0.1? B mo.m“......o-....

» The Wick contraction is decomposed as

Wi (0, x0) = Wi (y0, x0) + Wy (v0, x0)

where W,{I“C‘ is an approximation built from the factorized quark propagator

» At large time distances the multi-level works at its best. The (signal/noise)? is proportional
to n? (as opposed to n1) until it hits the green curve
» Refined definitions of W,ff‘"‘(yo,xo) are desirable to make computation even cheaper ...

» For similar results in other channels (vector-vector, pion with 5#0,...) see
(M. Cé parallel talk on Thursday)



Conclusions & Outlook

space

Ao Ay

e
time

» The effective quark interaction among the gauge field at distant points can be factorized

out in (L)QCD by exploiting a decomposition of the space-time in overlapping domains

» By introducing (a small number of) multi-boson auxiliary fields, the resulting action is

local in the block scalar and gauge fields and can be efficiently simulated

{det Q[U]}? = /'Dq&...exp{—so[UQg,...] — Si[Upy,.. ] - sz[UQ;,...]}

» When combined with the factorization of Wick contractions, these results pave the way for

multi-level integration in the presence of fermions, opening new perspectives in LGT



Conclusions & Outlook

A%

space

Ao Ay

o

e
time

» The computations of many interesting quantities are expected to profit: baryons

(ga, ---» < x>u_4), & — 2, leptonic, semi-leptonic and hadronic decays, p ,1’, ......

» Domains need neither to have a particular shape nor to be connected. What matters is the
minimum distance between Ag and Az. 4D decomposition attractive for large volumes

» Two key ingredients: locality of the Dirac operator and the fast decrease of its inverse with
the distance between sink and source. The factorization may, therefore, be applicable to

very different theories with fermions if they enjoy these very basic properties



