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Quantum Chromo Dynamics (QCD)

® The Euclidean QCD Lagrangian inv. under SU(3) color gauge group (formal level)

1 0 ~ _
_ 4. ) L :
Sqop = /d a;{ el | Fuw Fiw | + i T | Fuw B | + 9| D+ M]¢}
Fuv = 0uAy —0Au+ 1A, Al Fuw = 2€upoFpe Ay =ALTC
D = v{ou+A  Y={aqa,...,qn:} M =diag{m1,...,mn,}

® For M = 0 the action is invariant under the global group U (N¢)1, x U (N¢)g,

Vv, — VoL VL — @LVJ Vv, R = P+
- s 145
Yr — VRYR YR — IDRVRir Py = 5

® When the theory is quantized the chiral anomaly breaks explicitly the subgroup U (1) a4
® For the purpose of this lecture we can put 8 = 0

® For the rest of this lecture we will assume that heavy quarks have been integrated
out and we will focus on the symmetry group SU (3)1, x SU(3)g,
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Light pseudoscalar meson spectrum

® Octet compatible with SSB pattern | Is S Meson Quark Mass
Content (MeV)
SU(S)L X SU(B)RHSU(?))L_FR 110 at+ ud 140
110 =n— du 140
and soft explicit symmetry breaking 100 =O (dd —uaw)/v/2 135
Mmu, mg K ms < AQep s 5 +1 KT us 494
-2 +1 KO ds 498
2-2-1 K- st 494
1 1 70 7
55 1 K sd 498
O my,mgK<ms — mg <MK
00O n cosvng + sinvng D47

00 0 7»n —sindny + cosIns (958)

® A 9th pseudoscalar with m,, ~ O(Aqcn)

ng = (dd+ uu — 2s5)/V/6
no = (dd+ uw+ s3)/V/3
¥ o~ —11°
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Vector and Axial Ward Identities

® By grouping the generators of the SU(3)1, x SU(3)r group in the ones of the vector
subgroup SU(3)1+r plus the remaining axial generators

0u (Ve(@)0) = (d(x) [T, M]w() O) — (55, ,0)
On (A5(@)0) = (D) {T% M }rstp(a) O) - (65 ,0)
where currents and densities are defined to be
V& =y, T Al = Py Ty

S = YT %) P% = 5T %)

® Ward identities encode symmetry properties of the theory, and they remain valid
even in presence of spontaneous symmetry breaking
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Spontaneous chiral symmetry breaking in QCD

® By choosing the interpolating operator © = P%(0) the AWI reads

0 (AL@)P(0)) = ($(2) {1, M s () P(0)) — 55(2) ()

® In the chiral limit
(OuAL(2)P*(0) =0 @ #0

and by using Lorentz invariance and power counting

(A%(x)P*(0)) = c(;“)2 z # 0

® Integrating by parts the AWI in a ball of radius r
a a 3, -
| A @AL@P ) =~ )

which implies
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Pseudoscalar mesons as Goldstone bosons of the theory

® If (1pp) # 0 the relation

(0,45 (2)P*(0)) = ——5 () aa A

implies that the current-density correlation function is long-ranged

® The energy spectrum does not have a gap and the correlation function has a
particle pole at zero momentum (Goldstone theorem)

#® In the chiral limit (b)) # 0 implies the presence of 8 Goldstone bosons
identified with the 8 pseudoscalar light mesons [«,...,, K, ..., 1]

® Previous relations lead to
<O|AZ|Pa,pH> =pu I

which in turn implies that interactions among peudoscalar mesons vanish for p2 = 0
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Quark mass dependence of the pseudoscalar mesons

® When M = 0 (and for simplicity in the degenerate case M = m1)
a a 1 -
2m [ (PR(@)P(0)) = 5 (bv)

and therefore for m — 0

(1)

M3 = M?*=—-2m Yo

® |t is possible to build an effective theory of QCD with 8 light pseudoscalar mesons as
fundamental degrees of freedom

® |n particular for pions, it predicts the following functional forms for masses and decay
constants at NLO

M2
M2 = M?*1+4 ————log(M?/u?
™ { + 327T2F2 Og( //’Lﬂ')
M? 2,2
Fr. = F {1_167r—2F210g(M /MF)}
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Lattice regularization of QCD

® The Wilson action for the SU(3) Yang—Mills theory is

Sym = g% D {1— %Tr [Uu,y(a:)—FU;rW(m)]}

z,u<v

Uy () Up(2)Uy (z + p)U} (z + v) U (2)

® For small gauge fields (perturbation theory) U, (z) ~ 1 — a A, (x)

® Correlation functions computed non-perturbatively via Monte Carlo techniques

(01 ()02 (0)) = / DU e~ SyMW) 0y (U )05 (U 0)
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Lattice regularization of QCD

® Given a generic massive Dirac operator D(x,y) and the corresponding action

Se =Y @Dy v={a,..ax,}
T,y

the functional integral is defined to be

7 = féUcS@b&Z exp{—Svym — Sr}

® By integrating over the Grassman fields, a generic Euclidean corr. function is

(01 (21)O0s (32)) = % / SU e=SYM DetD [O1(21)02(2) win

® For vector gauge theories and positive masses, Det D is real and positive

® Correlation functions can be computed non-perturbatively via Monte Carlo techniques
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Naive discretization of the Dirac operator

® The naive gauge invariant discretization of the
Dirac operator is

Sin(pa)
1 2
D= cyu{Vi+Vup+m p
where (a is the lattice spacing) ~ =

/

V@) = U@+ ) - v(@)]

/
Vi) = 1lo@) - Ul - ap)ple - ap)l

® In the free case and in the Fourier basis (p,, = sin(ppa)/a)

~ —i1YuPu +m
D™ 1(p) =
(p) 22 12

there are 15 extra poles (doublers)!
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Nielsen-Ninomiya theorem Nielsen Ninomiya 81

® The following properties cannot hold simultaneously for free fermions on the lattice:

1. D(P) is an analytic periodic function of p,, with period 27 /a

~

2. Forp, < m/a D(P)=ivupu + Oap?)
3. D(P) is invertible at all non-zero momenta (mod 27 /a)

4. D anti-commute with ~5 (for m = 0)

® (1) is needed for locality, (2) and (3) ensures the correct continuum limit

® Chiral symmetry in the continuous form (4) must be broken on the lattice

® Physics essence: if action invariant under standard chiral sym. =—- no chiral anomaly
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Wilson fermions

® Wilson’s proposal is to add an irrelevant operator to the action
1 * >k

which breaks chiral symmetry explicitly (SU(3) L+ r vector symmetry preserved!)

® The Wilson term aV7, V,, removes the doubler poles. In the free case

Pl (p) = ~Put m(P)

0/ — .0, @2
P2 + m0(p)? )= mi g

2 a
where p,, = = sin (p%)
a

® At the classical level Wilson term is irrelevant, it gives vanishing contributions for a — 0
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Axial Ward identities for Wilson fermions Bochicchio et al. 85

® By performing a non-singlet axial rotation in the functional integral

O (AL(2)0) = ($(x) { T, MO }rs(2)0) + (X(2)0) — (620)

® At the classical level the operator X ¢(x) vanishes for a — 0. In the quantum theory
the 1/a ultraviolet divergences make the insertion of this operator non-vanishing

é@(a) ~ O(1)

® The operator X %(xz) can be made finite by subtracting all operators of lower
dimensions with proper coefficients

X = X4 P{T% M 5w + (Za — 10 AL
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Renormalized axial Ward identities for Wilson fermions Bochicchio et al. 85

® By inserting X in the AWI

240, AL (2)0) = () { T, MO — M }r59)(2)O) + (X*(2)0) — (520)

® If we define the renormalized pseudoscalar density to be Pe = Z5P%, since it cannot
mix with 9,, A,
~ MY —M

— Z4A% M =
Zp

are finite and correspond to the proper definition of axial currents and quark masses,
l.e. the ones that satisfy the AWI in the continuum limit

® For degenerate quarks the “on-shell” non-perturbative definition of the quark mass is

1 Za8,,(Ag(2)P*(0)
2~ (Pe(2)P*(0))

A

and if there is SSB the Goldstone bosons become massless when m = 0
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Some comments on Wilson fermions

® No conceptual problems for defining non-perturbatively a theory with a global
chiral-symmetry

® Operators in different chiral representations get mixed: renormalization procedure
complicated, but extra mixings fixed by Wils

® Additive quark-mass renormalization

® Spectrum and matrix elements have discretization effecs

® Lengthy but known procedure to remove them and remain with O(a?)
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First-principle results from lattice simulations

® First-principle results when all systematic uncertainties quantified

® Main sources of errors:

Statistical errors

Finite volume: L =1.5—5fm

Continuum limit: o = 0.04 — 0.1 fm

Chiral extrapolation: M, = 200 — 500 MeV

> W~

#® On the lattice they can be estimated and (eventually) removed without extra free

parameters or dynamical assumptions (QFT,V, Alg., CPU)
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Monte Carlo simulations of QCD

® A generic Euclidean correlation function can be written as

(O1(x1)O02(x2)) = %/5(] e~ "YM Det Dy [O1(21)02(%2)lyyiex

® For two degenerate flavors and positive mass, Det Dy is real and positive.

® ~2fmanda~ 0.08 fm=— C dim[Dy] ~ @: computing and diagonalizing
the full matrix is not feasible

® By introducing pseudo-fermion fields
1 _ _ F—1
(O1(21)0s(22)) = - / 5US56T eS0T D6 (01 (21)02 (22)] vy

® The determinant contribution can be taken into account by computing ngD;Vlgb
several times for each acceptance-rejection step
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Quenched approximation

® Fermion determinant replaced by its average value

(0) = / DUe~S¢ [De/é]Nf o

® Quenching is not a systematic approximation

® Quenched light hadron spectrum: ~ 10%
discrepancy with experiment

® For some quantities quenching is the only

systematics not quantified

m (GeV)

1.8 |
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1.2

1.0 |
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0.4

CP-PACS Coll 02

O P o
S =
A T
5 d T
N - 5 )
S A
82 e Kinput
o ¢ input
-------- experiment
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Schwarz-preconditioned Hybrid Monte Carlo (SAP) Liischer 03 04

® Decomposition of the lattice into blocks with Dirichlet b.c.
with g > /L > 1 GeV

® Asymptotic freedom: quarks are weakly interacting in the blocks
—> QCD easy (cheaper) to simulate

® Block interactions are weak and are taken into account exactly

1

S(x,y) ~ m

o 0o o o O o/|o o o O O Oof|o o 0o 0o o o/|o o O O O O

O e o e e O |OC © @€ ®© @ O O o e e o O O e o o o O

O e e o e O |OC © @ ¢ ¢ O O e e o o O O e o o o O

O © @ @ @ O||OC @ @ @ @ O/ O © @ @ @ OO © o o @ O
©C o @€ @ @ O[O © @ ©# @ O O o ©¢ @ @ OO @ © ¢ @ O
o o o o o of/lo o o o 0o olo o o o o oo o o o o o

O O O O O O]l]o o o o o o|lfoc 0o © 0 0 O]l]o o o o o o
O © © @ @ O/ |0 @ ©¢ ¢ @¢ OO © @ @ ¢ O O ©¢ o @ @ O
O © © @ @ OO @ @ ¢ @ OO © @ @ @ O O ©¢ o o o O
O © © @ @ OO0 @ @ @¢ @ OO © @ @ @ O 0O © o o @ O
O © @€ @€ @ O/ |© e @ @# @ OO © @ ©¢ @ O O e o @ @ O
O O O O O Ofj|lo o o o 0 O/|0O O O O O O||lo o o o o o
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Block decomposition of the Dirac operator

® The Wilson—Dirac operator

1 k k

can be decomposed as

Dw = Dqx + Dq + Daq* + Daq

where

o o o o o o]lo o o o 0 o/lo o o o o o|]loc o o o o o
O @€ @€ @ @ OO @ @ @ @ O/ O © @ @ ¢ OO © © @ @ O
O © @€ @ @ O||OC © @ @ @ OO © @ @ @@ O[O © o o @ O
O © @ @ @ OO @ @ @ @ O/ 0O © @ @ @@ O[O © o o @ O
©C o @€ @ @ 0|0 © @ ©#¢ @ O O o @ @ @ OO @ © ¢ @ O
0o o o o o of/lo o O 0o 0o olo o o o o oo o o o o o
O O O O O O]l]o o o o o o|lfoc 0 © 0 0 O]l]o o o o o o
O © © @ @ O/ |0 @ ©¢ ¢ @¢ OO © @ @ ¢ O O ©¢ o @ @ O
O © © @ @ OO @ @ ¢ @ OO © @ @ @ O O ©¢ o o o O
O © © @ @ OO0 @ @ @¢ @ OO © © @ @ O 0O © o o @ O
O © @€ @€ @ O/ |© e @ @# @ OO © @ @ @ O O e o @ @ O
O O O O O Ofj|lo o o o 0 Oo/|0O O O O O O/|lo o o o o o

Do = Z D Dq = Z Dy

white A black A

Q*, ) are white and black blocks, 0€2, 9Q2* are exterior boundaries
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Factorization of the determinant

® The determinant of the Dirac operator written as

det Dy = H det lA)A det R
allA

with the block interaction

R =1— Pyg+Dg "' DaqDgs Do

® For two flavors can be written as integral over scalar fields

Sox = D I1D3 " oall> + IR x]I?
all A

where ¢, defined on A and x on 9Q2*

o 0o o o O oI o o O O Oof|o o o o o o/|o o O O O O

O e o e e O |OC @© @€ ®© @ O O e e e o O O e o o o O

O e e e e O |OC © @€ ®© @ O O e e o o O O e o o o O

O © @ @ @ OO @ @ @ @ O/ 0O © @ @ @@ O[O © o o @ O
©C o @€ @ @ 0|0 © @ ©#¢ @ O O o @ @ @ OO @ © ¢ @ O
0o o o o o of/lo o O 0o 0o olo o o o o oo o o o o o
O O O O O O]l]o o o o o o|lfoc 0 © 0 0 O]l]o o o o o o
O © © @ @ O/ |0 @ ©¢ ¢ @¢ OO © @ @ ¢ O O ©¢ o @ @ O
O © © @ @ OO @ @ ¢ @ OO © @ @ @ O O ©¢ o o o O
O © © @ @ OO0 @ @ @¢ @ OO © © @ @ O 0O © o o @ O
O © @€ @€ @ O/ |© e @ @# @ OO © @ @ @ O O e o @ @ O
O O O O O Ofj|lo o o o 0 Oo/|0O O O O O O/|lo o o o o o
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Schwarz-preconditioned Hybrid Monte Carlo (SAP) Liischer 03 04

#® In molecular dynamics force naturally split ' ' ' '
10 E
- . . . S S o k=0 1

d Ee I F

aH(CB,M):—F(;(CIZ,/,L)—FA(CC,,LL)—FR(CC,M) 1__ S S .o o k=1 __
d e |
—U(z,p) =@, U (@, p) 01F Ty 3

- ’ S ! k=2
® Integration step-sizes chosen such that 5 5 % s

eG||FG|| ~ erl|FAl| ~ er||FR]
i.e. the most expensive force computed less often!

® Do not give up first-principles: teach Physics to exact algorithms for being smarter (faster)!
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First simulations with SAP for Ny = 2 Liischer 04; Del Debbio, L.G., Liischer, Petronzio, Tantalo 05

AN

N

PC cluster with 32 Nodes (64 Xeon procs)
a=0.080 fm L=2.0 fm .
T (~160 Gflops sustained)

Berlin ’01

Simulation cost

]

0.25 0.5 0.75

m_/m
TP

Volume a[fm] ~ m/ms Ncont
243 x 32 ~0.080 0.93 64

0.48 109
0.30 100 ® Full statistics for small lattice:
0.17 100 ~60 days @ 32 nodes
32% x 64 ~0.065 0.72 100 # All confs archived @ CERN
0.38 100
0.27 100 ® First goal: verifying QCD SSB and
0.20 100 make contact w. ChPT
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Extraction of masses from numerical simulations

® We computed two-point correlation functions of bilinears

Caa(t) =) (Af(x)A§(0))

which for large times ¢t — oo (and for T" — oo)

MpT

Canty — LD T  fan (T )

(0| Ag|m)|? _Mpt
e 2
2M p

® Euclidean correlation functions of bare operators at finite volume and finite cut-off
computed non-perturbatively with SAP
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Correlation functions on the finer lattice

S (0(x,£)0(0,0)) o e~mO M)

z

0.5|||||||||

04—

02—

0.1|||||||||

V=32"% 64, B=5.8, K=0.1541

° eff
°, am

®e [ ] .EF‘EF%E?ESE:‘EEiEiizizé

°e, am_
00000000 0-0-9-¢g-g-g-0-0-0

10

15 20 25 30
t/a

#® Algorithm stable over the relevant parameter ranges:

1. Quark mass: m ~ ms/6 vV

2. Lattice spacing: a ~ 0.065 fm v

3. Volume: L ~2fm Vv
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First results for pion mass and decay constant

Volume a[fm] am ama aFr
0.0274(3) 0.274(2) 0.0648(8)
243 % 32 ~0.080 0.0143(2) 0.197(2) 0.0544(9)
0.0086(2) 0.155(3) 0.0500(17)
0.0055(2) 0.121(4) 0.0461(23)
008 m = 676 MeV ; !
0.06 |- ] T 676 ]
o f ] 7 484 :
gom . 1w 0.04} 2125 382 . b
i 382, 7 i :
or 295 y 002 y
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Chiral behavior of M.

® At the NLO in SU(2) ChPT [J. Gasser, H. Leutwyler *84]

2

M
M2 = M2 {1 s log(MQ/ufr)}

with M? = 2Bm

® Data below M, ~ 500 MeV are compatible
(within errors) with NLO ChPT

® Smaller lattice spacing confirms the picture
® For comparison: from Nature
M?2/M? ~ const ~ 0.956(8)

in the range M = 200 — 500 MeV

(aM,)’

0.08

0.06

0.02

m_~676MeV &~

484 &
382 7
295 7

1 1 1 1 1 1 1 1 1 1
0.01 0.02 0.03
am
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Chiral behavior of F;

® NLO SU(2) ChPT gives [J. Gasser, H. Leutwyler *84]

2

M 2/, 2
FwZF{l—W—2F210g(M /MF)}

0.08 T

® Fitting points below M, ~ 500 MeV (Preliminary!)

0.06 [~ -

F7r ~ 80(7)MeV Lg;o.m: L

with Z 4 from 1-loop PT oz -

! ! ! ! ! ! ! ! ! ! ! !
0 0.01 0.02 0.03
am

® Full analysis at small lattice spacing in progress

® Also in this case data are compatible
(within errors) with NLO ChPT
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Wher € WCE arc...Liischer 04; Del Debbio, L.G., Liischer, Petronzio, Tantalo 05

m? [GeV?]

0.3

0.2

0.1

o SPQCdR "04

TyL *00

CERN-TOV "05

Exp.

0.05

0.1

CP-PACS °01
o
BNL 04

UKQCD ’01

qq+q ’04 |
®

|m~mg/2

JCPPACS 04 1m~mg/6

025 4 rfm]
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Summary

® Wilson fermions are theoretically well founded

® No conceptual problems for defining non-perturbatively a (global) chiral-symmetric

theory with a regularization which breaks chiral symmetry

® The continuum limit has to be taken after a proper renormalization procedure

® QCD spontaneous symmetry breaking can be studied with systematics under control

® First results with SAP: a breakthrough in full QCD simulations

® First goal: SSB observed in QCD and contact with ChPT established
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