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Numerical lattice QCD
I Extraordinary conceptual, algorithmic and

technical progress over the last 30 years:

∗ Hybrid Monte Carlo (HMC)
[Duane et al. 87]

∗ Multiple time-step integration
[Sexton, Weingarten 92]

∗ Frequency splitting of determinant
[Hasenbusch 01]

∗ Domain Decomposition
[Lüscher 04; Del Debbio et al. 06]

∗ Mass preconditioning and rational HMC
[Urbach et al 05; Clark, Kennedy 06]

∗ Deflation of low quark modes
[Lüscher 07]

∗ Avoiding topology freezing
[Lüscher, Schaefer 12]

[Engel, LG, Lottini, Sommer 15]
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I Light quarks at physical point can be simulated. Chiral regime of QCD is accessible

I Algorithms are designed to produce exact results up to statistical errors



Lattice QCD: a theoretical femtoscope

I Lattice QCD is the femtoscope for studying
strong dynamics. Its lenses are made of quantum
field theory, numerical techniques and computers

I It allows us to look also at quantities not accessi-
ble to experiments which may help understanding
the underlying mechanisms

I Femtoscope still rather crude. Often we compute
what we can and not what would like to

I A rather general strategy emerged: design special
purpose algorithms which exploit known math.
and phys. properties of the theory to be faster

I Results from first-principles when all syst. uncer-
tainties quantified. This achieved without intro-
ducing extra free parameters or dynamical as-
sumptions but just by improving the femtoscope

Lattice quantum field theory

Algorithms

Computers



Signal/noise ratio: nucleon

I The variance of the nucleon propagator

CN(y0, x0) = 〈WN(y0, x0)〉 ∝ e−MN |y0−x0|

when |y0 − x0| → ∞ goes as [Parisi 84; Lepage 89]

σ2
N(y0, x0) ∝ e−3Mπ|y0−x0|

I Signal/noise ratio decreases exponentially with
time distance

ncnfC
2
N

σ2
N

∝ ncnf e
−(2MN−3Mπ)|y0−x0|

At the physical point 2MN − 3Mπ ' 7.4 fm−1
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I Time distances of 1 fm or so are state of the art. For precise and accurate determinations
of MN , gA,. . . , 〈x〉u−d , . . . , ChPT suggests that ∼1.5 fm and ∼2.5 fm are needed for
two- and three-point functions respectively [Tiburzi 09, 15; Bär 15-17]



Signal/noise ratio: HVP, HLbL,. . .

I The HVP contribution to muon g − 2 reads

aHVPµ =
(α
π

)2
∫ ∞

0
dx0G(x0)K̃(x0,mµ)

where

G(x0) = −
∫

d3x〈Jemk (x)Jemk (0)〉

with K̃(x0,mµ) being a known function

I For the connected contribution
(largest and simplest to be computed)

ncnfG
2
conn

σ2
Gconn

∝ ncnf e
−2(Mρ−Mπ)|y0−x0|

if mρ lighter than two-pion states. Signal lost
at 1-1.5 fm due to exp. increase of stat error

[Della Morte et al. 17]
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Signal/noise ratio: HVP, HLbL,. . .

I The HVP contribution to muon g − 2 reads

aHVPµ =
(α
π

)2
∫ ∞

0
dx0G(x0)K̃(x0,mµ)

where

G(x0) = −
∫

d3x〈Jemk (x)Jemk (0)〉

with K̃(x0,mµ) being a known function

I The estimate from the Mainz group
[Della Morte et al. 17]

aHVPµ = (654± 32 stat ± 17 syst ± 10 scale

±7FV + 0
−10 disc) · 10−10.

shows an error dominated by statistics and
systematics due to the early cut. Reducible
by one order of magnitude if good signal
up to 2.5 fm or so.

[Della Morte et al. 17]
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Signal/noise ratio: leptonic and semileptonic B decays

I Two (noisy) basic building blocks:

- Mesons with (large) non-zero momentum

- Static quark line

B K(~p)
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I Two (noisy) basic building blocks:

- Mesons with (large) non-zero momentum

- Static quark line

I Non-zero momentum correlators

ncnfC
2
K ,~p

σ2
K ,~p

∝ ncnf e
−2(EK (~p)−MK )|y0−x0|

B K(~p)

[Della Morte et al. 12]
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Signal/noise ratio: leptonic and semileptonic B decays

I Two (noisy) basic building blocks:

- Mesons with (large) non-zero momentum

- Static quark line

I Static and static-light correlators

ncnfC
2
B

σ2
B

∝ ncnf e
−2(Estat−Mπ/2)|y0−x0|

relevant for B→lν,B→π(K)lν,B→K(K∗)ll , . . .

B K(~p)

[Della Morte et al. 15]
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I The interesting range Q2 = 5− 15 GeV2 not reachable with standard MC integration

I Similar or worse problem for many other correlators, e.g. η′, glueballs, disconnected, . . .
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Multi-level integration
[Parisi, Petronzio, Rapuano 83; Lüscher, Weisz 01; . . . ; Meyer 02; LG, Della Morte 08 10, . . . ]

I If the action and the obser-
vable could be factorized

S[U] = S0[UΩ∗
0

] + S2[UΩ∗
1

] + . . .

O[U] = O0[UΩ∗
0

]× O2[UΩ∗
1

]

then

〈O[U] 〉 = 〈 〈〈O0[UΩ∗
0

]〉〉Λ0×〈〈O2[UΩ∗
1

]〉〉Λ2 〉

Λ0 Λ1 Λ2

Ω∗
0

Ω∗
1

time

sp
a
ce

where
〈〈O0[UΩ∗

0
]〉〉Λ0 =

1
ZΛ0

∫
DUΛ0 e

−S0[UΩ∗
0

]
O0[UΩ∗

0
]

I Two-level integration:

- n0 configurations UΛ1

- n1 configurations UΛ0 and UΛ2 for each UΛ1

I If 〈〈·〉〉Λi
can be computed efficiently with a statistical error comparable to its central value,

then the prefactor in the signal/noise ratio changes as
ncnf → n0n

2
1

at the cost of generating approximatively n0n1 level-0 configurations
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I With more active blocks, at the cost of approximatively n0n1 level-0 configurations,

ncnf → n0n
nblock
1

and the gain increases exponentially with the distance since nblock ∝ |y0 − x0|. For the
same relative accuracy of the correlator, the computational effort would then increase
approximatively linearly with the distance
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Factorization of the quark propagator
I By introducing the matrix

ω = P∂Λ0Q
−1
Ω∗

0
QΛ1,2 Q−1

Ω∗
1
QΛ1,0

which :

- Acts on one boundary only

- Is suppressed (exp.) in ∆

- Has factorizedfielddependence

Λ0 Λ1 Λ2

∂Λ2∂Λ∗
2∂Λ0 ∂Λ∗

0

Ω∗
0

Ω∗
1
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I The exact propagator for x ∈ Λ0 and y ∈ Λ2 is given by

Q−1(y , x) = −Q−1
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1
(y , ·)QΛ1,0

1
1− ω Q−1

Ω∗
0

(·, x)

and analogously for the other components
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- Acts on one boundary only

- Is suppressed (exp.) in ∆

- Has factorizedfielddependence
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Ω∗
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I The exact propagator for x ∈ Λ0 and y ∈ Λ2 is given by

Q−1(y , x) = −Q−1
Ω∗

1
(y , ·)QΛ1,0

∞∑
n=0

ωn Q−1
Ω∗

0
(·, x)

and analogously for the other components

I Propagator is a sum of terms whose full gauge-field dependence is factorized. Built by
quarks looping around the boundaries, each loop bringing a suppression factor ∝ e−Mπ∆.
Merit of SAP [Schwarz 1870] with overlapping domains



Multi-boson block factorization

Λ0 Λ1 Λ2

φ0 φ1 φ2

ηk ξk

Ω∗
0

Ω∗
1

time

sp
a
ce

I Factorization of gauge-field dependence of the determinant accomplished (Nf = 2) :

detQ2

det{1−wN+1}2 =

∫
Dφ . . . exp

{
−|PΛ0Q

−1
Ω∗

0
φ0|2− |Q−1

Λ1,1
φ1|2− |PΛ2Q

−1
Ω∗

1
φ2|2−

N∑
k=1

|W√ukχk |2
}

where, by defining ηk = P∂Λ0χk and ξk = P∂Λ2χk ,

|Wzχk |2 = |P∂Λ0Q
−1
Ω∗

0
QΛ1,2ξk |2 + |P∂Λ2Q

−1
Ω∗

1
QΛ1,0ηk |2 + z(ξk ,QΛ2,1Q

−1
Ω∗

0
ηk ) + . . .

I The dependence of the full bosonic action from the links in Λ0 and Λ2 is thus factorized.
The (small) direct coupling, due to quarks looping up to N times around the boundaries,
is replaced by a block-local interaction of links with N/2 multi-boson fields per flavour



Multi-level integration with fermions

Λ0 Λ1 Λ2

φ0 φ1 φ2

ηk ξk

Ω∗
0

Ω∗
1

time

sp
a
ce

I A generic exact scheme for multi-level integration is:

〈O〉 =
〈OWN〉N
〈WN〉N

=
〈Ofact 〉N
〈WN〉N

+
〈OWN − Ofact〉N

〈WN〉N

where Ofact is a (rather precise) approximation of O, and 〈Ofact 〉N is computed by

multi-level integration with (a small number of) N multi-boson fields

I Given the large spectral gap of (1− ω), and depending on the target statistical error,
WN can be neglected with N ∼ 10 or so. Not a big number!

I In practice ∆ ∼ 0.5 fm or so may be already sufficient for ω to be suppressed enough



A crucial test on the spectrum of ω

I Wilson glue with two-flavours of O(a)-
improved Wilson quarks

a = 0.065 fm T × L3 = 4× 23 fm4

Mπ = 440 MeV ncnf = 200

I Computed 60 eigenvalues with largest norm

ω vi = δi vi

∆ = 12a
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8 0.3273 0.2886 0.0616 0.5130

12 0.1710 0.1692 0.0453 0.3193
16 0.1072 0.0951 0.0284 0.1977
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I For the matrix (1− ω) the spectral gap ε is large (as expected). For ∆ = 12a ∼ 0.8 fm
is ε ∼0.7 or so. The Neumann series converges very fast!
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Simplest factorized approximation of propagator

Q−1(y , x) = −Q−1
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1
(y , ·)QΛ1,0Q

−1
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0
(·, x) + . . .
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I Factorized gauge-field dependence in Wick contractions of hadron correlators too
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Correlation functions of gluonic operators

I We have computed the gluonic fields

ē(x0) =
1
4

∑
~x

F a
µν(x)F a

µν(x)

q̄(x0) =
1

64π2

∑
~x

εµνρσ F a
µν(x)F a

ρσ(x)

and the expectation values

Ce(x0) =
1
L3 〈ē(x0)〉

Cqq(y0, x0) =
1
L3 〈q̄(y0) q̄(x0)〉

I Blocking with two level integration in Λ0 and Λ2

Λ0 : x0 ∈ [0, 23a] , Λ1 : x0 ∈ [24a, 35a]

Λ2 : x0 ∈ [36a, 63a] , a = 0.065 fm , N = 12

the gain turns out to be the best possible one
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Connected vector two-point correlation function

I Wilson glue with quenched Wilson quarks

β = 6.0 , (T/a)× (L/a)3 = 64× 243

a = 0.093 fm , Mπ = 455 MeV

n0 = 50 , n1 = 30

I Blocking with two level integration in Λ0 and Λ2

Λ0 : x0 ∈ [0, 15a] , Λ1 : x0 ∈ [16a, 23a]

Λ2 : x0 ∈ [24a, 63a]

the gain turns out to be the best possible one

(1/n1) for x0 ∈ Λ2

I 1 fm gain in plateau at n1 = 30. Larger n1 in

progress. Expected space for more gain.
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Multi-level for nucleon two-point function
I Wilson glue with quenched Wilson quarks

β = 6.0 , (T/a)× (L/a)3 = 64× 243

a = 0.093 fm , Mπ = 455 MeV

n0 = 50 , n1 = 20

I The Wick contraction is decomposed as

WN(y0, x0) = W fact
N (y0, x0) + W r

N(y0, x0)
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y0/a

0.1

1
σN

F/σN

σN
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N is an approximation built from the factorized quark propagator
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where W fact
N is an approximation built from the factorized quark propagator

I At large time distances the multi-level works at its best. The (signal/noise)2 is proportional
to n2

1 (as opposed to n1) until it hits the green curve

I Refined definitions of W fact
N (y0, x0) are desirable to make computation even cheaper . . .
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I The effective quark interaction among the gauge field at distant points can be factorized

out in (L)QCD by exploiting a decomposition of the space-time in overlapping domains

I By introducing (a small number of) multi-boson auxiliary fields, the resulting action is

local in the block scalar and gauge fields and can be efficiently simulated

{detQ[U]}2 =

∫
Dφ . . . exp

{
−S0[UΩ∗

0
, . . . ]− S1[UΛ1 , . . . ]− S2[UΩ∗

1
, . . . ]

}
I When combined with the factorization of Wick contractions, these results pave the way for

multi-level integration in the presence of fermions, opening new perspectives in LGT
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I A breakthrough for the computations of many interesting quantities sensitive to SM and

hopefully to BSM physics: baryons (gA, . . . , < x >u−d ), g − 2, leptonic, semileptonic and
hadronic decays, ρ ,η′, . . . . . .

I For instance they are within reach (with hard work):

- subpercent precision in the hadronic vacuum polarization within QCD

- Q2 = 10− 15 GeV2 for semileptonic B decays

I Domains need neither to have a particular shape nor to be connected. 4D decomposition
opens the window to large volumes (10− 20 fm with present computers), and therefore
to a new class of problems



Pseudoscalar correlators at non-zero momentum

I Wilson glue with quenched Wilson quarks

β = 6.0 , (T/a)× (L/a)3 = 64× 243

a = 0.093 fm , Mπ = 455 MeV

n0 = 50 , n1 = 30

I Blocking with two level integration in Λ0 and Λ2

Λ0 : x0 ∈ [0, 15a] , Λ1 : x0 ∈ [16a, 23a]

Λ2 : x0 ∈ [24a, 63a]

the gain turns out to be the best possible one

(1/n1) for x0 ∈ Λ2
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