Factorization of fermions and multi-level integration

Leonardo Giusti

University of Milano Bicocca and INFN

 $10^{\rm th}$ Odense Winter School on Theoretical Physics – November $30^{\rm th}$ 2017

Outline

- Introduction to Signal/Noise problem:
 - Baryons
 - Vector correlators (HVP, HLbL)
 - Semileptonic form factors

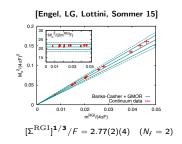
- . . .

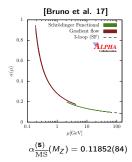
Multi-level integration

- Factorization of fermions:
 - Domain decomposition (overlapping blocks)
 - Multi-boson
- Multi-level integration with fermions. Numerical tests for:
 - Baryons
 - Vector correlators

Numerical lattice QCD

- Extraordinary conceptual, algorithmic and technical progress over the last 30 years:
 - * Hybrid Monte Carlo (HMC) [Duane et al. 87]
 - * Multiple time-step integration [Sexton, Weingarten 92]
 - * Frequency splitting of determinant [Hasenbusch 01]
 - Domain Decomposition
 [Lüscher 04; Del Debbio et al. 06]
 - Mass preconditioning and rational HMC [Urbach et al 05; Clark, Kennedy 06]
 - Deflation of low quark modes [Lüscher 07]
 - * Avoiding topology freezing [Lüscher, Schaefer 12]

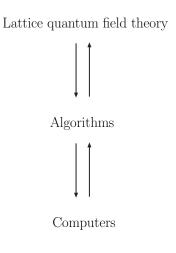




- Light quarks at physical point can be simulated. Chiral regime of QCD is accessible
- Algorithms are designed to produce exact results up to statistical errors

Lattice QCD: a theoretical femtoscope

- Lattice QCD is the femtoscope for studying strong dynamics. Its lenses are made of quantum field theory, numerical techniques and computers
- It allows us to look also at quantities not accessible to experiments which may help understanding the underlying mechanisms
- Femtoscope still rather crude. Often we compute what we can and not what would like to
- A rather general strategy emerged: design special purpose algorithms which exploit known math. and phys. properties of the theory to be faster
- Results from first-principles when all syst. uncertainties quantified. This achieved without introducing extra free parameters or dynamical assumptions but just by improving the femtoscope



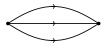
Signal/noise ratio: nucleon

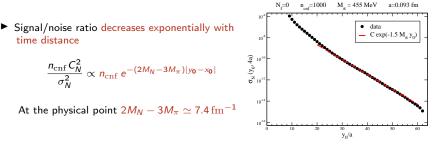
The variance of the nucleon propagator

$$C_N(y_0, x_0) = \langle W_N(y_0, x_0) \rangle \propto e^{-M_N |y_0 - x_0|}$$

when $|y_0 - x_0| \rightarrow \infty$ goes as [Parisi 84; Lepage 89]

$$\sigma_N^2(y_0, x_0) \propto e^{-3M_\pi |y_0 - x_0|}$$





Time distances of 1 fm or so are state of the art. For precise and accurate determinations of M_N, g_A,..., ⟨x⟩_{u-d}, ..., ChPT suggests that ~1.5 fm and ~2.5 fm are needed for two- and three-point functions respectively [Tiburzi 09, 15; Bär 15-17]

Signal/noise ratio: HVP, HLbL,...

• The HVP contribution to muon g - 2 reads

$$a_{\mu}^{\rm HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dx_0 G(x_0) \tilde{K}(x_0, m_{\mu})$$

where

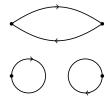
$$G(x_0) = -\int d^3x \langle J_k^{
m em}(x) J_k^{
m em}(0) \rangle$$

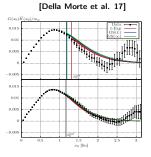
with $\tilde{K}(x_0, m_\mu)$ being a known function

 For the connected contribution (largest and simplest to be computed)

$$\frac{n_{\rm cnf} G_{\rm conn}^2}{\sigma_{G_{\rm conn}}^2} \propto n_{\rm cnf} \, e^{-2(M_\rho - M_\pi)|y_0 - x_0|}$$

if m_{ρ} lighter than two-pion states. Signal lost at 1-1.5 fm due to exp. increase of stat error





Signal/noise ratio: HVP, HLbL,...

• The HVP contribution to muon g - 2 reads

$$a_{\mu}^{\rm HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dx_0 G(x_0) \tilde{K}(x_0, m_{\mu})$$

where

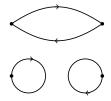
$$G(x_0) = -\int d^3x \langle J_k^{
m em}(x) J_k^{
m em}(0) \rangle$$

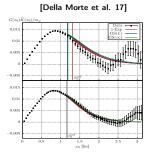
with $ilde{K}(x_0, m_\mu)$ being a known function

The estimate from the Mainz group [Della Morte et al. 17]

$$\begin{array}{ll} a_{\mu}^{\rm HVP} & = & \left(654 \pm 32_{\rm \, stat} \pm 17_{\rm \, syst} \pm 10_{\rm \, scale} \right. \\ & \\ & \pm 7_{\rm \, FV} \, {}^{+\ 0}_{-10\ \rm disc} \right) \cdot 10^{-10}. \end{array}$$

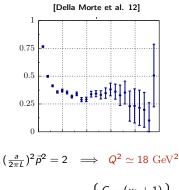
shows an error dominated by statistics and systematics due to the early cut. Reducible by one order of magnitude if good signal up to 2.5 fm or so.





- Two (noisy) basic building blocks:
 - Mesons with (large) non-zero momentum
 - Static quark line

- Two (noisy) basic building blocks:
 - Mesons with (large) non-zero momentum
 - Static quark line

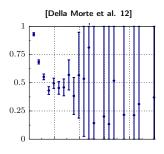


 $m_{ ext{eff}}(x_0) = -\log\left\{rac{C_{K,ec{p}}(x_0+1)}{C_{K,ec{p}}(x_0)}
ight\}$

Non-zero momentum correlators

$$\frac{n_{\rm cnf} C_{K,\vec{p}}^2}{\sigma_{K,\vec{p}}^2} \propto n_{\rm cnf} \, e^{-2(E_K(\vec{p}) - M_K)|y_0 - x_0}$$

- Two (noisy) basic building blocks:
 - Mesons with (large) non-zero momentum
 - Static quark line



 $(\frac{a}{2\pi L})^2 \vec{p}^2 = 4 \implies Q^2 \simeq 15 \text{ GeV}^2$

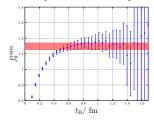
$$m_{\text{eff}}(x_0) = -\log\left\{\frac{C_{K,\vec{p}}(x_0+1)}{C_{K,\vec{p}}(x_0)}\right\}$$

Non-zero momentum correlators

$$\frac{n_{\rm cnf} C_{K,\vec{p}}^2}{\sigma_{K,\vec{p}}^2} \propto n_{\rm cnf} \, e^{-2(E_K(\vec{p}) - M_K)|y_0 - x_0}$$

- Two (noisy) basic building blocks:
 - Mesons with (large) non-zero momentum
 - Static quark line

[Della Morte et al. 15]



 $Q^2\simeq 21~{\rm GeV}^2$

The interesting range $Q^2 = 5 - 15 \text{ GeV}^2$ not reachable with standard MC integration

Similar or worse problem for many other correlators, e.g. η' , glueballs, disconnected, \ldots

Static and static-light correlators

 $\frac{n_{\rm cnf} C_B^2}{\sigma_B^2} \propto n_{\rm cnf} \; e^{-2(E_{\rm stat}-M_\pi/2)|y_0-x_0|} \label{eq:ncnf}$

relevant for $B \rightarrow I\nu, B \rightarrow \pi(K) I\nu, B \rightarrow K(K^*) II, \ldots$

Outline

- Introduction to Signal/Noise problem:
 - Baryons
 - Vector correlators (HVP, HLbL)
 - Semileptonic form factors
 - . . .
- Multi-level integration

- Factorization of fermions:
 - Domain decomposition (overlapping blocks)
 - Multi-boson
- Multi-level integration with fermions. Numerical tests for:
 - Baryons
 - Vector correlators

Multi-level integration

[Parisi, Petronzio, Rapuano 83; Lüscher, Weisz 01; ...; Meyer 02; LG, Della Morte 08 10, ...]

 If the action and the observable could be factorized

$$\begin{split} S[U] &= S_0[U_{\Omega_0^*}] + S_2[U_{\Omega_1^*}] + .\\ O[U] &= O_0[U_{\Omega_0^*}] \times O_2[U_{\Omega_1^*}] \end{split}$$

then

$$\langle O[U] \rangle = \langle \langle O_0[U_{\Omega_0^*}] \rangle \rangle_{\Lambda_0} \times \langle O_2[U_{\Omega_1^*}] \rangle \rangle_{\Lambda_2} \rangle$$

where

$$\langle\!\langle O_0[U_{\Omega_0^*}]\rangle\!\rangle_{\Lambda_0} = \frac{1}{Z_{\Lambda_0}} \int \mathcal{D}U_{\Lambda_0} e^{-S_0[U_{\Omega_0^*}]} O_0[U_{\Omega_0^*}]$$

Two-level integration:

- n_0 configurations U_{Λ_1}

- n_1 configurations U_{Λ_0} and U_{Λ_2} for each U_{Λ_1}
- If ⟨⟨·⟩⟩_{Λ_i} can be computed efficiently with a statistical error comparable to its central value, then the prefactor in the signal/noise ratio changes as

$$n_{
m cnf}
ightarrow n_0 n_1^2$$

at the cost of generating approximatively $n_0 n_1$ level-0 configurations



Multi-level integration

[Parisi, Petronzio, Rapuano 83; Lüscher, Weisz 01; ...; Meyer 02; LG, Della Morte 08 10, ...]

 If the action and the observable could be factorized

$$S[U] = S_0[U_{\Omega_0^*}] + S_2[U_{\Omega_1^*}] + .$$

$$O[U] = O_0[U_{\Omega_0^*}] \times O_2[U_{\Omega_1^*}]$$

then

$$\langle O[U] \rangle = \langle \langle O_0[U_{\Omega_0^*}] \rangle \rangle_{\Lambda_0} \times \langle O_2[U_{\Omega_1^*}] \rangle \rangle_{\Lambda_2} \rangle$$

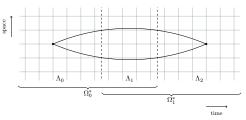
where

$$\langle\!\langle O_0[U_{\Omega_0^*}]\rangle\!\rangle_{\Lambda_0} = \frac{1}{Z_{\Lambda_0}} \int \mathcal{D}U_{\Lambda_0} e^{-S_0[U_{\Omega_0^*}]} O_0[U_{\Omega_0^*}]$$

• With more active blocks, at the cost of approximatively $n_0 n_1$ level-0 configurations,

$$n_{\rm cnf} \rightarrow n_0 n_1^{n_{\rm block}}$$

and the gain increases exponentially with the distance since $n_{\rm block} \propto |y_0 - x_0|$. For the same relative accuracy of the correlator, the computational effort would then increase approximatively linearly with the distance



Outline

- Introduction to Signal/Noise problem:
 - Baryons
 - Vector correlators (HVP, HLbL)
 - Semileptonic form factors

- . . .

Multi-level integration

- Factorization of fermions:
 - Domain decomposition (overlapping blocks)
 - Multi-boson
- Multi-level integration with fermions. Numerical tests for:
 - Baryons
 - Vector correlators

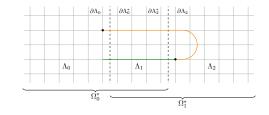
Factorization of the quark propagator

By introducing the matrix

$$\omega = P_{\partial \Lambda_{\mathbf{0}}} Q_{\Omega_{\mathbf{0}}^*}^{-1} Q_{\Lambda_{\mathbf{1},\mathbf{2}}} Q_{\Omega_{\mathbf{1}}^*} Q_{\Lambda_{\mathbf{1},\mathbf{0}}}$$

which :

- Acts on one boundary only
- Is suppressed (exp.) in Δ
- Has factorized field dependence



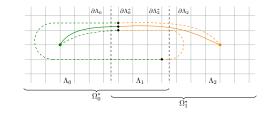
Factorization of the quark propagator

By introducing the matrix

$$\omega = P_{\partial \Lambda_{\mathbf{0}}} Q_{\Omega_{\mathbf{0}}^{*}}^{-1} Q_{\Lambda_{\mathbf{1},\mathbf{2}}} \ Q_{\Omega_{\mathbf{1}}^{*}}^{-1} Q_{\Lambda_{\mathbf{1},\mathbf{0}}}$$

which :

- Acts on one boundary only
- Is suppressed (exp.) in Δ
- Has factorized field dependence



• The exact propagator for $x \in \Lambda_0$ and $y \in \Lambda_2$ is given by

$$Q^{-1}(y,x) = -Q_{\Omega_{1}^{*}}^{-1}(y,\cdot)Q_{\Lambda_{1,0}} \frac{1}{1-\omega} Q_{\Omega_{0}^{*}}^{-1}(\cdot,x)$$

and analogously for the other components

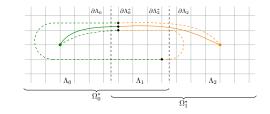
Factorization of the quark propagator

By introducing the matrix

$$\omega = P_{\partial \Lambda_{\mathbf{0}}} Q_{\Omega_{\mathbf{0}}^*}^{-1} Q_{\Lambda_{\mathbf{1},\mathbf{2}}} Q_{\Omega_{\mathbf{1}}^*} Q_{\Lambda_{\mathbf{1},\mathbf{0}}}$$

which :

- Acts on one boundary only
- Is suppressed (exp.) in Δ
- Has factorized field dependence



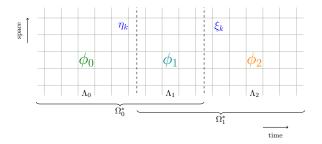
• The exact propagator for $x \in \Lambda_0$ and $y \in \Lambda_2$ is given by

$$Q^{-1}(y,x) = -Q^{-1}_{\Omega_{\mathbf{1}}^*}(y,\cdot)Q_{\Lambda_{\mathbf{1},\mathbf{0}}} \sum_{n=0}^{\infty} \omega^n Q^{-1}_{\Omega_{\mathbf{0}}^*}(\cdot,x)$$

and analogously for the other components

▶ Propagator is a sum of terms whose full gauge-field dependence is factorized. Built by quarks looping around the boundaries, each loop bringing a suppression factor $\propto e^{-M_{\pi}\Delta}$. Merit of SAP [Schwarz 1870] with overlapping domains

Multi-boson block factorization



Factorization of gauge-field dependence of the determinant accomplished $(N_f = 2)$:

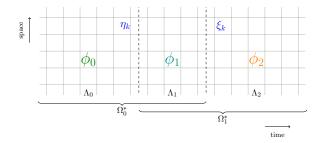
$$\frac{\det Q^2}{\det\{1-w^{N+1}\}^2} = \int \mathcal{D}\phi \dots \exp\left\{-|P_{\Lambda_0} Q_{\Omega_0^+}^{-1} \phi_0|^2 - |Q_{\Lambda_1,1}^{-1} \phi_1|^2 - |P_{\Lambda_2} Q_{\Omega_1^+}^{-1} \phi_2|^2 - \sum_{k=1}^N |W_{\sqrt{u_k}} \chi_k|^2\right\}$$

where, by defining $\eta_k = P_{\partial \Lambda_0} \chi_k$ and $\xi_k = P_{\partial \Lambda_2} \chi_k$,

$$|W_{z}\chi_{k}|^{2} = |P_{\partial \Lambda_{0}}Q_{\Omega_{0}^{*}}^{-1}Q_{\Lambda_{1,2}}\xi_{k}|^{2} + |P_{\partial \Lambda_{2}}Q_{\Omega_{1}^{*}}^{-1}Q_{\Lambda_{1,0}}\eta_{k}|^{2} + z(\xi_{k}, Q_{\Lambda_{2,1}}Q_{\Omega_{0}^{*}}^{-1}\eta_{k}) + \dots$$

The dependence of the full bosonic action from the links in Λ₀ and Λ₂ is thus factorized. The (small) direct coupling, due to quarks looping up to N times around the boundaries, is replaced by a block-local interaction of links with N/2 multi-boson fields per flavour

Multi-level integration with fermions



A generic exact scheme for multi-level integration is:

$$\langle O \rangle = \frac{\langle O \mathcal{W}_N \rangle_N}{\langle \mathcal{W}_N \rangle_N} = \frac{\langle O_{\text{fact}} \rangle_N}{\langle \mathcal{W}_N \rangle_N} + \frac{\langle O \mathcal{W}_N - O_{\text{fact}} \rangle_N}{\langle \mathcal{W}_N \rangle_N}$$

where O_{fact} is a (rather precise) approximation of O, and $\langle O_{\text{fact}} \rangle_N$ is computed by multi-level integration with (a small number of) N multi-boson fields

- Given the large spectral gap of (1ω) , and depending on the target statistical error, W_N can be neglected with $N \sim 10$ or so. Not a big number!
- ▶ In practice $\Delta \sim 0.5$ fm or so may be already sufficient for ω to be suppressed enough

A crucial test on the spectrum of ω

 Wilson glue with two-flavours of O(a)improved Wilson quarks

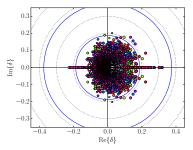
$$a = 0.065 \text{ fm}$$
 $T \times L^3 = 4 \times 2^3 \text{ fm}^4$

$$M_{\pi} = 440 \text{ MeV}$$
 $n_{cnf} = 200$

Computed 60 eigenvalues with largest norm

$$\omega \mathbf{v_i} = \mathbf{\delta_i} \mathbf{v_i}$$

 $\Delta = 12a$



 $\bar{\delta} = \exp\{-M_{\pi}\Delta\}$

Δ/a	$\overline{\delta}$	$\langle max_i \ket{\delta_i} angle$	$\sigma(\max_i \delta_i)$	$\max\max_i \delta_i $
8	0.3273	0.2886	0.0616	0.5130
12	0.1710	0.1692	0.0453	0.3193
16	0.1072	0.0951	0.0284	0.1977

A crucial test on the spectrum of ω

 Wilson glue with two-flavours of O(a)improved Wilson quarks

$$a = 0.065 \text{ fm}$$
 $T \times L^3 = 4 \times 2^3 \text{ fm}^4$

$$M_{\pi} = 440 \text{ MeV}$$
 $n_{cnf} = 200$

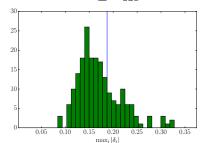
Computed 60 eigenvalues with largest norm

$$\omega \mathbf{v_i} = \mathbf{\delta_i} \mathbf{v_i}$$

 $\bar{\delta} = \exp\{-M_{\pi}\Delta\}$

Δ/a	$\overline{\delta}$	$\langle max_i \ket{\delta_i} angle$	$\sigma(max_i \delta_i)$	$\max\max_i \delta_i $
8	0.3273	0.2886	0.0616	0.5130
12	0.1710	0.1692	0.0453	0.3193
16	0.1072	0.0951	0.0284	0.1977

For the matrix (1 − ω) the spectral gap ε is large (as expected). For Δ = 12a ~ 0.8 fm is ε ~ 0.7 or so. The Neumann series converges very fast!



 $\Delta = 12a$

A crucial test on the spectrum of ω

 Wilson glue with two-flavours of O(a)improved Wilson quarks

$$a = 0.065 \text{ fm}$$
 $T \times L^3 = 4 \times 2^3 \text{ fm}^4$

$$M_{\pi} = 440 \text{ MeV}$$
 $n_{cnf} = 200$

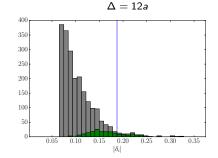
Computed 60 eigenvalues with largest norm

$$\omega \mathbf{v_i} = \mathbf{\delta_i} \mathbf{v_i}$$

 $\bar{\delta} = \exp\{-M_{\pi}\Delta\}$

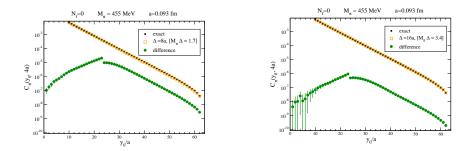
Δ/a	$\overline{\delta}$	$\langle max_i \ket{\delta_i} angle$	$\sigma(max_i \delta_i)$	$\max\max_i \delta_i $
8	0.3273	0.2886	0.0616	0.5130
12	0.1710	0.1692	0.0453	0.3193
16	0.1072	0.0951	0.0284	0.1977

For the matrix (1 − ω) the spectral gap ε is large (as expected). For Δ = 12a ~ 0.8 fm is ε ~ 0.7 or so. The Neumann series converges very fast!



Simplest factorized approximation of propagator

$$Q^{-1}(y,x) = -Q_{\Omega_{1}^{*}}^{-1}(y,\cdot)Q_{\Lambda_{1,0}}Q_{\Omega_{0}^{*}}^{-1}(\cdot,x) + \dots$$



 $\partial \Lambda_0$ $\partial \Lambda_0^*$

 $\partial \Lambda_2^*$ $\partial \Lambda_2$

 Ω_1^*

 Λ_2

Factorized gauge-field dependence in Wick contractions of hadron correlators too

Outline

- Introduction to Signal/Noise problem:
 - Baryons
 - Vector correlators (HVP, HLbL)
 - Semileptonic form factors

- . . .

Multi-level integration

- Factorization of fermions:
 - Domain decomposition (overlapping blocks)
 - Multi-boson
- Multi-level integration with fermions. Numerical tests for:
 - Baryons
 - Vector correlators

Correlation functions of gluonic operators

We have computed the gluonic fields

$$\begin{split} \bar{e}(x_0) &= \frac{1}{4} \sum_{\vec{x}} F^a_{\mu\nu}(x) F^a_{\mu\nu}(x) \\ \bar{q}(x_0) &= \frac{1}{64\pi^2} \sum_{\vec{x}} \epsilon_{\mu\nu\rho\sigma} F^a_{\mu\nu}(x) F^a_{\rho\sigma}(x) \end{split}$$

and the expectation values

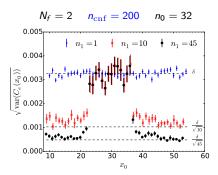
$$C_{e}(x_{0}) = \frac{1}{L^{3}} \langle \bar{e}(x_{0}) \rangle$$
$$C_{qq}(y_{0}, x_{0}) = \frac{1}{L^{3}} \langle \bar{q}(y_{0}) \, \bar{q}(x_{0}) \rangle$$

Blocking with two level integration in Λ₀ and Λ₂

$$\Lambda_0 : x_0 \in [0, 23a], \quad \Lambda_1 : x_0 \in [24a, 35a]$$

 Λ_2 : $x_0 \in [36a, 63a]$, a = 0.065 fm, N = 12

the gain turns out to be the best possible one



Correlation functions of gluonic operators

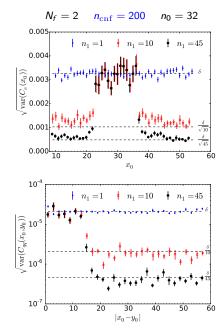
We have computed the gluonic fields

$$\begin{split} \bar{e}(x_0) &= \frac{1}{4} \sum_{\vec{x}} F^a_{\mu\nu}(x) F^a_{\mu\nu}(x) \\ \bar{q}(x_0) &= \frac{1}{64\pi^2} \sum_{\vec{x}} \epsilon_{\mu\nu\rho\sigma} F^a_{\mu\nu}(x) F^a_{\rho\sigma}(x) \end{split}$$

and the expectation values

$$C_e(x_0) = \frac{1}{L^3} \langle \bar{e}(x_0) \rangle$$
$$C_{qq}(y_0, x_0) = \frac{1}{L^3} \langle \bar{q}(y_0) \, \bar{q}(x_0) \rangle$$

• Blocking with two level integration in Λ_0 and Λ_2 $\Lambda_0 : x_0 \in [0, 23a]$, $\Lambda_1 : x_0 \in [24a, 35a]$ $\Lambda_2 : x_0 \in [36a, 63a]$, a = 0.065 fm, N = 12the gain turns out to be the best possible one



Connected vector two-point correlation function

Wilson glue with quenched Wilson quarks

$$\beta = 6.0$$
, $(T/a) \times (L/a)^3 = 64 \times 24^3$

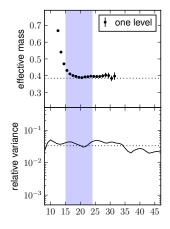
$$a = 0.093 \text{ fm}$$
, $M_{\pi} = 455 \text{ MeV}$

$$n_0 = 50, \qquad n_1 = 30$$

Blocking with two level integration in Λ₀ and Λ₂
 Λ₀ : x₀ ∈ [0, 15a], Λ₁ : x₀ ∈ [16a, 23a]
 Λ₂ : x₀ ∈ [24a, 63a]
 the gain turns out to be the best possible one

 $(1/n_1)$ for $x_0 \in \Lambda_2$

1 fm gain in plateau at n₁ = 30. Larger n₁ in progress. Expected space for more gain.



$$m_{\rm eff}(x_0) = -\log\left\{\frac{G(x_0+1)}{G(x_0)}\right\}$$

Connected vector two-point correlation function

Wilson glue with quenched Wilson quarks

$$\beta = 6.0$$
, $(T/a) \times (L/a)^3 = 64 \times 24^3$

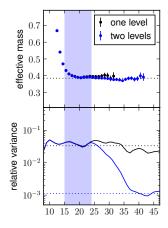
$$a = 0.093 \text{ fm}$$
, $M_{\pi} = 455 \text{ MeV}$

$$n_0 = 50, \qquad n_1 = 30$$

Blocking with two level integration in Λ₀ and Λ₂
 Λ₀ : x₀ ∈ [0, 15a], Λ₁ : x₀ ∈ [16a, 23a]
 Λ₂ : x₀ ∈ [24a, 63a]
 the gain turns out to be the best possible one

 $(1/n_1)$ for $x_0 \in \Lambda_2$

1 fm gain in plateau at n₁ = 30. Larger n₁ in progress. Expected space for more gain.



$$m_{\rm eff}(x_0) = -\log\left\{\frac{G(x_0+1)}{G(x_0)}\right\}$$

Multi-level for nucleon two-point function

Wilson glue with quenched Wilson quarks

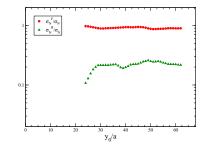
$$\beta = 6.0$$
, $(T/a) \times (L/a)^3 = 64 \times 24^3$

a = 0.093 fm, $M_{\pi} = 455 \text{ MeV}$

- $n_0 = 50$, $n_1 = 20$
- The Wick contraction is decomposed as

$$W_N(y_0, x_0) = W_N^{\text{fact}}(y_0, x_0) + W_N^r(y_0, x_0)$$

where W_N^{fact} is an approximation built from the factorized quark propagator



Multi-level for nucleon two-point function

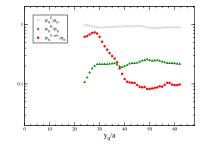
Wilson glue with quenched Wilson quarks

$$\beta = 6.0$$
, $(T/a) \times (L/a)^3 = 64 \times 24^3$

a = 0.093 fm, $M_{\pi} = 455 \text{ MeV}$

- $n_0 = 50$, $n_1 = 20$
- The Wick contraction is decomposed as

$$W_N(y_0, x_0) = W_N^{\text{fact}}(y_0, x_0) + W_N^r(y_0, x_0)$$



where W_N^{fact} is an approximation built from the factorized quark propagator

Multi-level for nucleon two-point function

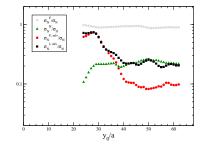
Wilson glue with quenched Wilson quarks

$$\beta = 6.0$$
, $(T/a) \times (L/a)^3 = 64 \times 24^3$

a = 0.093 fm, $M_{\pi} = 455 \text{ MeV}$

- $n_0 = 50$, $n_1 = 20$
- The Wick contraction is decomposed as

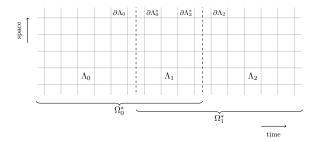
 $W_N(y_0, x_0) = W_N^{\text{fact}}(y_0, x_0) + W_N^r(y_0, x_0)$



where W_N^{fact} is an approximation built from the factorized quark propagator

- At large time distances the multi-level works at its best. The (signal/noise)² is proportional to n₁² (as opposed to n₁) until it hits the green curve
- Refined definitions of $W_N^{\text{fact}}(y_0, x_0)$ are desirable to make computation even cheaper ...

Conclusions & Outlook

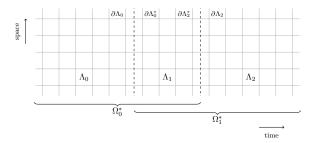


- The effective quark interaction among the gauge field at distant points can be factorized out in (L)QCD by exploiting a decomposition of the space-time in overlapping domains
- By introducing (a small number of) multi-boson auxiliary fields, the resulting action is local in the block scalar and gauge fields and can be efficiently simulated

$$\{\det Q[U]\}^2 = \int \mathcal{D}\phi \dots \exp\left\{-S_0[U_{\Omega_0^*},\dots] - S_1[U_{\Lambda_1},\dots] - S_2[U_{\Omega_1^*},\dots]\right\}$$

When combined with the factorization of Wick contractions, these results pave the way for multi-level integration in the presence of fermions, opening new perspectives in LGT

Conclusions & Outlook



- A breakthrough for the computations of many interesting quantities sensitive to SM and hopefully to BSM physics: baryons $(g_A, \ldots, < x >_{u-d})$, g-2, leptonic, semileptonic and hadronic decays, ρ , η' ,
- ► For instance they are within reach (with hard work):
 - subpercent precision in the hadronic vacuum polarization within QCD
 - $Q^2 = 10 15 \text{ GeV}^2$ for semileptonic B decays
- ▶ Domains need neither to have a particular shape nor to be connected. 4D decomposition opens the window to large volumes (10 20 fm with present computers), and therefore to a new class of problems

Pseudoscalar correlators at non-zero momentum

 $a^2 \vec{p}^2 = 2$

one leve 0. effective mass 0.60.50.4 0.3relative variance 10^{-1} 10^{-2} 10^{-3} 10 152025 $30\ \ 35\ \ 40$ 45

$$m_{\rm eff}(x_0) = -\log\left\{\frac{G(x_0+1)}{G(x_0)}\right\}$$

$$\beta = 6.0$$
, $(T/a) \times (L/a)^3 = 64 \times 24^3$

a = 0.093 fm, $M_{\pi} = 455 \text{ MeV}$

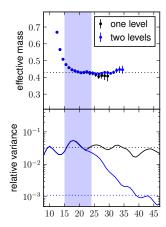
$$n_0 = 50, \qquad n_1 = 30$$

Blocking with two level integration in Λ₀ and Λ₂

 $\begin{array}{l} \Lambda_0: \, x_0 \in [0, 15a] \,, \quad \Lambda_1: \, x_0 \in [16a, 23a] \\ \Lambda_2: \, x_0 \in [24a, 63a] \\ \text{the gain turns out to be the best possible one} \\ (1/n_1) \text{ for } x_0 \in \Lambda_2 \end{array}$

Pseudoscalar correlators at non-zero momentum

 $a^2 \vec{p}^2 = 2$



$$m_{\rm eff}(x_0) = -\log\left\{\frac{G(x_0+1)}{G(x_0)}\right\}$$

Wilson glue with quenched Wilson quarks

$$\beta = 6.0$$
, $(T/a) \times (L/a)^3 = 64 \times 24^3$

a = 0.093 fm, $M_{\pi} = 455 \text{ MeV}$

 $n_0 = 50, \qquad n_1 = 30$

Blocking with two level integration in Λ₀ and Λ₂

 $\begin{array}{l} \Lambda_0: \ x_0 \in [0, 15a] \ , \quad \Lambda_1: \ x_0 \in [16a, 23a] \\ \\ \Lambda_2: \ x_0 \in [24a, 63a] \\ \\ \text{the gain turns out to be the best possible one} \\ (1/n_1) \ \text{for} \ x_0 \in \Lambda_2 \end{array}$