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N u mer|ca| |att|ce QC D [Engel, LG, Lottini, Sommer 15]

20
M, Zi(2m™C'F)

» Extraordinary conceptual, algorithmic and
technical progress over the last 30 years:

s

M, Z/(4xF)?
°

* Hybrid Monte Carlo (HMC)
[Duane et al. 87] 005

Banks-Casher + GMOR —
Continuum data ~—

* Multiple time-step integration L TRy iy
[Sexton, Weingarten 92] m"anF)
[ERCNYR/F = 2.77(2)(8) (N = 2)

* Frequency splitting of determinant

[Hasenbusch 01]
[Bruno et al. 17]

* Domain Decomposition Shrodinger Funcrional |

Gradient flow — m—

[Liischer 04; Del Debbio et al. 06] 08 | FHoop (8F) - - - |
ALPHA

Caaborsion

* Mass preconditioning and rational HMC 06
[Urbach et al 05; Clark, Kennedy 06]

* Deflation of low quark modes

[Liischer 07] \

* Avoiding topology freezing ulGev]
[Liischer, Schaefer 12]

a%( Mz) = 0.11852(84)

» Light quarks at physical point can be simulated. Chiral regime of QCD is accessible

» Algorithms are designed to produce exact results up to statistical errors



Lattice QCD: a theoretical femtoscope

> Lattice QCD is the femtoscope for studying )
strong dynamics. Its lenses are made of quantum Lattice quantum field thcory

field theory, numerical techniques and computers

» |t allows us to look also at quantities not accessi-
ble to experiments which may help understanding
the underlying mechanisms

Algorithms

» Femtoscope still rather crude. Often we compute
what we can and not what would like to

» A rather general strategy emerged: design special
purpose algorithms which exploit known math.
and phys. properties of the theory to be faster

» Results from first-principles when all syst. uncer- Computers

tainties quantified. This achieved without intro-

ducing extra free parameters or dynamical as-

sumptions but just by improving the femtoscope



Signal/noise ratio: nucleon

» The variance of the nucleon propagator
Cr(y0,%0) = (Wn(y0, x0)) ox e Mnlyo—>ol
when |yo — xo| — 00 goes as [Parisi 84; Lepage 89]
o2(v0,x0) e~ 3Mx|yo—xo|

N=0 n,=1000 M, =455MeV  a=0093fm
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» Time distances of 1 fm or so are state of the art. For precise and accurate determinations
of My, ga,. ... (X)u—d. ..., ChPT suggests that ~1.5 fm and ~2.5 fm are needed for
two- and three-point functions respectively [Tiburzi 09, 15; Bar 15-17]



Signal /noise ratio: HVP, HLbL,. ..

» The HVP contribution to muon g — 2 reads

AHVP = (%)2/:0 dxo G(x0) K (x0, my.) <>

where
G(x0) = = [ dx(m(x)5™(0)

with K(x0, m,,) being a known function
[Della Morte et al. 17]

okt o
» For the connected contribution Y K
(largest and simplest to be computed) s Tﬁm
: i
2 0.005
”cnécconn o Nent e—2(Mp—Mz)|yo—xol oot -
TGeonn N
o g ﬂp
if m, lighter than two-pion states. Signal lost o T DIH
at 1-1.5 fm due to exp. increase of stat error R S— Gl ‘




Signal /noise ratio: HVP, HLbL,. ..

» The HVP contribution to muon g — 2 reads

SV = (3)2/.'00 dxo G (x0)K (x0, my) <>
where
G(x0) = — / X (™ () 5™ (0)) Q Q

with K(x0, m,,) being a known function
[Della Morte et al. 17]

» The estimate from the Mainz group

[Della Morte et al. 17] X
alVP = (654 £ 324ta0 £ 17 syst & 10cale "
_ 001 ST
+7 FV J:1% disc) -10 1O~ " ‘k o
it il
shows an error dominated by statistics and boos
systematics due to the early cut. Reducible

by one order of magnitude if good signal o
up to 2.5 fm or so.



Signal /noise ratio: leptonic and semileptonic B decays

» Two (noisy) basic building blocks:
K
- Mesons with (large) non-zero momentum B (m

- Static quark line



Signal /noise ratio: leptonic and semileptonic B decays

» Two (noisy) basic building blocks:

- Mesons with (large) non-zero momentum

- Static quark line

» Non-zero momentum correlators

2
Nenf CK,ﬁ
2

TK,p

X Nepp e 2(Ex(P)=Mx)lyo—xol

B@K(@

[Della Morte et al. 12]
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()PP =2 = Q%>~18GeV?
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Signal /noise ratio: leptonic and semileptonic B decays

» Two (noisy) basic building blocks:

- Mesons with (large) non-zero momentum

- Stat

» Non-zero

Nenf C

g

ic quark line

momentum correlators

2

K.,p —2(E -M -
—L o« neure (Ex (P)—Mk)|yo—xo
K,

B@K(@

[Della Morte et al. 12]
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Signal /noise ratio: leptonic and semileptonic B decays

» Two (noisy) basic building blocks:

B K(p)

- Mesons with (large) non-zero momentum

- Static quark line

[Della Morte et al. 15]

» Static and static-light correlators

IIIMHHHHHMH |

2 g .
”cnfzcs o oy e 2(Estat =M /2) y0—xo =1 .
O'B H
relevant for B—/v,B—n(K)lv,B—K(K*)Il, ... D R T e R
tp/ fm
Q2 ~ 21 GeV?

» The interesting range @2 =5 — 15 GeV? not reachable with standard MC integration

» Similar or worse problem for many other correlators, e.g. 7', glueballs, disconnected, ...
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Multi-level integration

[Parisi, Petronzio, Rapuano 83; Liischer, Weisz 01; ...; Meyer 02; LG, Della Morte 08 10, ...]

» If the action and the obser-
vable could be factorized

‘

S[Ul = SolUgzl+ S2lUqs] + ... | |
Ol = Ool[Un;] x Oz[Un;] Ao A A
then X o —
(O[U]) = ({OolUqzIMno x {O2[Uaz]Na,)
where
{Oo[UgzThno = 5— /DU,\(J Sollng ] OolUq;]

» Two-level integration:

- ng configurations Up,
- ny configurations Up, and Up, for each Up,
» If {(-))a;, can be computed efficiently with a statistical error comparable to its central value,
then the prefactor in the signal/noise ratio changes as
2
Nent — nony

at the cost of generating approximatively ngn; level-0 configurations



Multi-level integration

[Parisi, Petronzio, Rapuano 83; Liischer, Weisz 01; ...; Meyer 02; LG, Della Morte 08 10, ...]

» If the action and the obser- . |
vable could be factorized

So[Ugz] + S2[Ugs] + -

space

su] =
O[U] = Oo[Ugz] x O2[Uqy] " a1 N
then % oA .
(O[U]) = ({OolUag Mo x {O2[UazINn,)
where
(Oo[Ugg1) = 20 /DU/\O 151 0y Uy ]

» With more active blocks, at the cost of approximatively ngni level-0 configurations,

n .
Nent — NO nlblo(k

and the gain increases exponentially with the distance since npjock o |yo — xo|. For the
same relative accuracy of the correlator, the computational effort would then increase

approximatively linearly with the distance
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Factorization of the quark propagator
» By introducing the matrix
w = Pyp, Qs;a} Qhs 2 Qgi? Qhs 0 Bho

which :

- Acts on one boundary only Ao

- Is suppressed (exp.) in A

ING

Ay

oA

- Hasfactorized field dependence

Z2%)

Az

2



Factorization of the quark propagator

» By introducing the matrix
_ -1 1
w = PB/\O QQ; QALZ QQI Q/\I,O

which :

- Acts on one boundary only

Ao 1 A 1 As

- Is suppressed (exp.) in A

- Hasfactorized field dependence 2

» The exact propagator for x € Ag and y € Az is given by
Qil(yvx):_QQ ( )QA]_O 1_ QQ*( X)

and analogously for the other components



Factorization of the quark propagator
» By introducing the matrix
w = Pap, Qg{él Qs 2 Qg; Qhs 0
which :

- Acts on one boundary only

- Is suppressed (exp.) in A

- Hasfactorized field dependence

» The exact propagator for x € Ag and y € Az is given by
oo
—1 _ 1 -1
Q (yax)__QQi (Y:‘)Q/\Lo Zown QQS (',X)
n—

and analogously for the other components

» Propagator is a sum of terms whose full gauge-field dependence is factorized. Built Il\)ﬂy
quarks looping around the boundaries, each loop bringing a suppression factor oc e ™=

Merit of SAP [Schwarz 1870] with overlapping domains



Multi-boson block factorization

space

_
3
=

time

» Factorization of gauge-field dependence of the determinant accomplished (Nf = 2) :

det @2 _ _ - N
det{1—wN+1}2 :/D¢~ . ~eXP{—|P/\° QQSI¢0|2— |Q,\:1¢1|2— [P, QQil¢2|2— kX: W aoxil®
=1

where, by defining 1, = Paopo Xk and &k = Pan, Xk,
IWaxkl?® = |Pane 0531 Qny26kl* + |Pan, ngll Qny, oMkl + 2(€k, Qnz s anlnk) +...

» The dependence of the full bosonic action from the links in Ag and Az is thus factorized.
The (small) direct coupling, due to quarks looping up to N times around the boundaries,

is replaced by a block-local interaction of links with N /2 multi-boson fields per flavour



Multi-level integration

space
[

o

Ao

with fermions

time

> A generic exact scheme for multi-level integration is:

OWn)n

<Ofact ) N <O Wy — Ofact) N

(0)=*

Wn)n

(Wn)n Wn)n

where Og,ct, is a (rather precise) approximation of O, and (Ogact )i is computed by

multi-level integration with (a small number of) N multi-boson fields

» Given the large spectral gap of (1 — w), and depending on the target statistical error,

Wy can be neglected with N ~ 10 or so. Not a big number!

» In practice A ~ 0.5 fm or so may be already sufficient for w to be suppressed enough



A crucial test on the spectrum of w

A =12a

» Wilson glue with two-flavours of O(a)-
improved Wilson quarks

a=0065fm T xL3=4x23fm*

My = 440 MeV  n.,¢ = 200

—0.4 —0.2 0.0 0.2 0.4

Re{d}

» Computed 60 eigenvalues with largest norm

w V; = 5,’ Vi _
6 = exp{—M A}
A/a 5 (max; |6;])  o(max;|d;])  maxmax;|d;|
8 0.3273 0.2886 0.0616 0.5130
12 0.1710 0.1692 0.0453 0.3193

16 0.1072 0.0951 0.0284 0.1977




A crucial test on the spectrum of w

A =12a
» Wilson glue with two-flavours of O(a)- 0
improved Wilson quarks 2%
a=0.065fm T xL[3=4x2%fm* v
15
My = 440 MeV  n¢ne = 200 10
. . U 000 05 020 025 030 0%
» Computed 60 eigenvalues with largest norm max; |6

w Vi = 5,‘ \'H _
0 = exp{—MrA}

AJa 5 (max; |6i|) o(max;|6;]) maxmax;|d;|
8 0.3273 0.2886 0.0616 0.5130
12 0.1710 0.1692 0.0453 0.3193
16 0.1072 0.0951 0.0284 0.1977

» For the matrix (1 — w) the spectral gap ¢ is large (as expected). For A = 12a ~ 0.8 fm
is € ~0.7 or so. The Neumann series converges very fast!




A crucial test on the spectrum of w

A =12a

» Wilson glue with two-flavours of O(a)-
improved Wilson quarks

a=0.065fm T xL3=4x23fm*

My = 440 MV ngyp = 200

» Computed 60 eigenvalues with largest norm

w v; = 0 v; _
6 = exp{—M A}

AJa é (max; |6i|) o(max;|6;]) maxmax;|d;|
8 0.3273 0.2886 0.0616 0.5130
12 0.1710 0.1692 0.0453 0.3193
16 0.1072 0.0951 0.0284 0.1977

» For the matrix (1 — w) the spectral gap ¢ is large (as expected). For A = 12a ~ 0.8 fm

is € ~0.7 or so. The Neumann series converges very fast!




Simplest factorized approximation of propagator

Q7MY x) = = Q0. (V. )Qnye Qi () + -

Ao | A | As

i

2

N,=0 M, =455 MeV a=0.093 fm

..... . exact ,
"""" A=8a[M, A=17]
o difference

.
10° %0, |
.
10°F B
0] I I I I L L
0 10 20 30 60
voa

» Factorized gauge-field dependence in Wick contractions of hadron correlators too
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Correlation functions of gluonic operators

» We have computed the gluonic fields

Z
647 > €uwpo FiL(X)F3

&(xo) v (X)Fu(x)

- (%)

d(xo)

and the expectation values

Clo) = 15(e00)

Caa(y0, X0) (a(y0) G(x0))

3
» Blocking with two level integration in Ag and A;

Mo : x0 €[0,233], Ai: xp € [24a,354]

A2 xp € [36a,63a], a=0.065fm, N =12

the gain turns out to be the best possible one

Nf =2 Nenf = 200 ng = 32
0.005
b oy —10 § n =15
0.004 l
;,;04003 Ll ity ”‘[ljirH”I]I r'—.l |1uI" e
g 0.002
b 4
0.001}- # !'_' !*_L'! '""""--"--{-H-‘-H!'ﬂt e
. V1
'.‘"°d°u°.____________30_._.!._1_‘“'!“" 5
V5
0.0005 - 5 s .




Correlation functions of gluonic operators

» We have computed the gluonic fields

B0) = 5 3 FLOIFL)

_ 1
d(xo) 6472 Z €uvpo FSV(X)FSU(X)

and the expectation values

Clo) = 15(e00)

Caa(yo,x0) = (a(y0) G(x0))

3
» Blocking with two level integration in Ag and A;

Mo : x0 €[0,233], Ai: xp € [24a,354]
A2t xo € [36a,633], a=0.065fm, N=12

the gain turns out to be the best possible one
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Connected vector two-point correlation function

» Wilson glue with quenched Wilson quarks

B=6.0, (T/a)x(L/a)®=64x 243

a=0.093 fm, M, =455 MeV

no = 50, ny =30

» Blocking with two level integration in Ag and Az
Mo : x0 €[0,153] , A1: xp € [16a,234]

A2 xp € [24a,63a]
the gain turns out to be the best possible one

(1/n1) for xo € A2

» 1 fm gain in plateau at n; = 30. Larger nj in

progress. Expected space for more gain.

0.6 1
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relative variance
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megt (x0) = —|og{M}

G(x0)



Connected vector two-point correlation function

» Wilson glue with quenched Wilson quarks

B=6.0, (T/a)x(L/a)®=64x 243

a=0.093 fm, M, =455 MeV

no = 50, ny =30

» Blocking with two level integration in Ag and Az
Mo : x0 €[0,153] , A1: xp € [16a,234]

A2 xp € [24a,63a]
the gain turns out to be the best possible one

(1/n1) for xo € A2

» 1 fm gain in plateau at n; = 30. Larger nj in

progress. Expected space for more gain.
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Multi-level for nucleon two-point function

» Wilson glue with quenched Wilson quarks

T
o o/,
B=6.0, (T/a)x (L/a)®=64x 243 17 Tt s enessse
a=0.093 fm, M, = 455 MeV I e,
o1 s
ng = 507 np =20 F
» The Wick contraction is decomposed as
0 % IR E T
Wi (y0,x0) = Wi (0. x0) + W} (v0. x0) v

where W!2ct is an approximation built from the factorized quark propagator
N pp g



Multi-level for nucleon two-point function

» Wilson glue with quenched Wilson quarks

B=6.0, (T/a)x(L/a)®=64x 243

a=0.093 fm, M, =455 MeV

I7o:507 np =20

» The Wick contraction is decomposed as

Wn(yo, x0) = Wi (y0, x0) + W (¥0, x0)

01

>

g
0,10,

®
0,70,

N

0
W WOIVWWN
AAAAA prwe VR
T
.

K .

oo, 0es""o0ee

*%0g00e

where W!2ct is an approximation built from the factorized quark propagator
N pp g




Multi-level for nucleon two-point function

» Wilson glue with quenched Wilson quarks

T
oo,
B=6.0, (T/a)x(L/a)®=064x243 Tl oo |

: » ol "’:-..
a=0.093 fm, M; = 455 MeV L A.AnuAAzt‘::l--l:ﬁ“"':::::nm
o1l N 'm...“ esestoee

no = 50, n =20 : as
» The Wick contraction is decomposed as

0 % IR E T

Wi (30, %0) = Wi (y0, x0) + Wi (0. %0) e

where W,{I“C‘ is an approximation built from the factorized quark propagator

» At large time distances the multi-level works at its best. The (signal/noise)? is proportional

to n? (as opposed to n1) until it hits the green curve

» Refined definitions of W,ff‘“‘(yo, Xo) are desirable to make computation even cheaper ...



Conclusions & Outlook

space

Ao Ay

e
time

» The effective quark interaction among the gauge field at distant points can be factorized

out in (L)QCD by exploiting a decomposition of the space-time in overlapping domains

» By introducing (a small number of) multi-boson auxiliary fields, the resulting action is

local in the block scalar and gauge fields and can be efficiently simulated

{det Q[U]}? = /'Dq&...exp{—so[UQg,...] — Si[Upy,.. ] - sz[UQ;,...]}

» When combined with the factorization of Wick contractions, these results pave the way for

multi-level integration in the presence of fermions, opening new perspectives in LGT



Conclusions & Outlook

space

Ao Ay

e
time

» A breakthrough for the computations of many interesting quantities sensitive to SM and

hopefully to BSM physics: baryons (ga, ..., < x >,_4), & — 2, leptonic, semileptonic and

hadronic decays, p 7/, ......

» For instance they are within reach (with hard work):

- subpercent precision in the hadronic vacuum polarization within QCD
- Q2 =10 — 15 GeV2 for semileptonic B decays
» Domains need neither to have a particular shape nor to be connected. 4D decomposition

opens the window to large volumes (10 — 20 fm with present computers), and therefore
to a new class of problems



Pseudoscalar correlators at non-zero momentum

» Wilson glue with quenched Wilson quarks

B=6.0, (T/a)x (L/a)®=64x 243

2=0.093 fm, My = 455 MeV

I‘Io:507 ny =30

» Blocking with two level integration in Ag and A2
Mo : xo €[0,15a], A1: xo € [16a,234]

A2 @ xo € [24a,63a]
the gain turns out to be the best possible one

(1/n1) for xo € A2
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Pseudoscalar correlators at non-zero momentum

» Wilson glue with quenched Wilson quarks

B=6.0, (T/a)x (L/a)®=64x 243

2=0.093 fm, My = 455 MeV

I‘Io:507 ny =30

» Blocking with two level integration in Ag and A2
Mo : xo €[0,15a], A1: xo € [16a,234]

A2 xp € [24a,63a]
the gain turns out to be the best possible one

(1/n1) for xo € A2
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