ERRATA-CORRIGE

A primer on the physics
of the Cosmic Microwave Background

Massimo Giovannini ${ }^{1}$
Department of Physics, Theory Division, CERN, 1211 Geneva 23, Switzerland INFN, Section of Milan-Bicocca, 20126 Milan, Italy

Abstract

This note contains a list of typos appearing in my book "A primer on the physics of the Cosmic Microwave Background" published in 2008.

[^0]- page 9. Equation (1.8)

$$
\begin{equation*}
\rho_{\gamma}\left(t_{0}\right)=\frac{T_{\gamma}^{4}}{\pi^{2}} \int_{0}^{\infty} \frac{x^{3}}{e^{x}-1}=\frac{\pi^{2}}{15} T_{\gamma}^{4} \rightarrow \rho_{\gamma}\left(t_{0}\right)=\frac{T_{\gamma}^{4}}{\pi^{2}} \int_{0}^{\infty} \mathbf{d x} \frac{x^{3}}{e^{x}-1}=\frac{\pi^{2}}{15} T_{\gamma}^{4} \tag{1}
\end{equation*}
$$

- page 65. Equation (2.123). The correct form of Eq. (2.123) is

$$
\begin{equation*}
\frac{\tau_{\mathrm{rec}}}{\tau_{\mathrm{p}}}=\sqrt{\frac{z_{\mathrm{p}}}{z_{\mathrm{eq}}}}\left[\sqrt{1+\frac{z_{\mathrm{eq}}}{z_{\mathrm{rec}}}}-1\right], \tag{2}
\end{equation*}
$$

and not

$$
\begin{equation*}
\frac{\tau_{\mathrm{rec}}}{\tau_{\mathrm{p}}}=\sqrt{\frac{z_{\mathrm{p}}}{z_{\mathrm{eq}}}}\left[\sqrt{1+\frac{z_{\mathrm{eq}}}{z_{\mathrm{rec}}}-1}\right] \tag{3}
\end{equation*}
$$

- page 71. Equation (3.8)

$$
\begin{equation*}
r_{H}\left(t_{\mathrm{P}}\right)=4.08 \times 10^{-4}\left(\frac{0.7}{h_{0}}\right)\left(\frac{T}{\mathrm{eV}}\right) \rightarrow r_{H}\left(t_{\mathrm{P}}\right)=4.08 \times 10^{-4}\left(\frac{0.7}{h_{0}}\right)\left(\frac{T}{\mathrm{eV}}\right) \mathbf{c m} . \tag{4}
\end{equation*}
$$

- page 83. Equation (4.11) must be corrected as:

$$
\begin{equation*}
H_{\mathrm{i}}^{-1}\left(\frac{a_{\mathrm{f}}}{a_{\mathrm{i}}}\right)_{\mathrm{dS}}\left(\frac{a_{\mathrm{r}}}{a_{\mathrm{f}}}\right)_{\mathrm{reh}}\left(\frac{a_{\mathrm{eq}}}{a_{\mathrm{r}}}\right)_{\mathrm{rad}}\left(\frac{a_{0}}{a_{\mathrm{eq}}}\right)_{\mathrm{mat}} \geq H_{0}^{-1} . \tag{5}
\end{equation*}
$$

- page 84 . Equation (4.17), second equality:

$$
\begin{equation*}
1.22 \times 10^{-61} M_{\mathrm{P}} \rightarrow 1.22 \times 10^{-61} M_{\mathrm{P}}\left(\frac{h_{0}}{0.7}\right) \tag{6}
\end{equation*}
$$

- page 96. before Eq. (4.36), the sentence "Consequently, the radiation of H_{rh}^{-1} to H_{i}^{-1} will be given by a different equation and [...]" must be corrected as "Consequently, the evolution from H_{rh}^{-1} to H_{i}^{-1} will be given by a different equation and [...]" ;
- page 124. second line after Equation (5.17). The adverb Recently must be erased since it is a spurious character.
- page 133. the correct form of Equation (6.10) is

$$
\begin{equation*}
\delta T_{\mu \nu} \rightarrow \delta \tilde{T}_{\mu \nu}=\delta T_{\mu \nu}-T_{\mu}^{\lambda} \nabla_{\nu} \epsilon_{\lambda}-T_{\nu}^{\lambda} \nabla_{\mu} \epsilon_{\lambda}-\epsilon^{\lambda} \nabla_{\lambda} T_{\mu \nu} \tag{7}
\end{equation*}
$$

i.e. the indices of the third term at the right hand side are inverted.

- page 191. Equation (7.100). The second term at the left hand side contains a term $\left(1+2 c_{\mathrm{st}}^{2}\right)$ which must be changed into $\left(1+3 c_{\mathrm{st}}^{2}\right)$. The correct form of Eq. (7.100) reads:

$$
\begin{aligned}
& \psi^{\prime \prime}+\mathcal{H}\left[\phi^{\prime}+\left(2+3 c_{\mathrm{st}}^{2}\right) \psi^{\prime}\right]+\left[\mathcal{H}^{2}\left(1+3 c_{\mathrm{st}}^{2}\right)+2 \mathcal{H}^{\prime}\right] \phi \\
& -c_{\mathrm{st}}^{2} \nabla^{2} \psi+\frac{1}{3} \nabla^{2}(\phi-\psi)=4 \pi G a^{2} \delta p_{\mathrm{nad}},
\end{aligned}
$$

- page 202. Equations (7.151), (7.152) and (7.153) have some minor typos generated by an incorrect action during the copyediting process of the editorial office. Expressions like $(3-n) / 2$ have been incorrectly simplified as $3-n / 2$ by arbitrarily erasing the brackets. The correct expression of Eq. (7.151) is:

$$
\begin{equation*}
\int_{0}^{\infty} d y_{0} y_{0}^{n-3} J_{\ell+1 / 2}^{2}\left(y_{0}\right)=\frac{1}{2 \sqrt{\pi}} \frac{\Gamma\left(\frac{3-n}{2}\right) \Gamma\left(\ell+\frac{n}{2}-\frac{1}{2}\right)}{\Gamma\left(\frac{4-n}{2}\right) \Gamma\left(\frac{5}{2}+\ell-\frac{n}{2}\right)} \tag{8}
\end{equation*}
$$

The correct expression of Eq. (7.152) is:

$$
\begin{equation*}
\Gamma\left(\frac{3-n}{2}\right)=\frac{\sqrt{2 \pi} \Gamma(3-n)}{2^{5 / 2-n} \Gamma\left(\frac{4-n}{2}\right)} \tag{9}
\end{equation*}
$$

The correct expression of Eq. (7.153) is:

$$
\begin{equation*}
\mathcal{Z}(n, \ell)=\frac{\pi^{2}}{4}\left(\frac{k_{0}}{k_{\mathrm{p}}}\right)^{n-1} \frac{\Gamma(3-n) \Gamma\left(\ell+\frac{n}{2}-\frac{1}{2}\right)}{2^{n}} \frac{\Gamma^{2}\left(\frac{4-n}{2}\right) \Gamma\left(\frac{5}{2}+\ell-\frac{n}{2}\right)}{.} \tag{10}
\end{equation*}
$$

- page 208. Equation (8.18). After the second equality the factor at the right hand side must be $-3 / 2$ and not -2 . The correct form of Eq. (8.18) is:

$$
\begin{equation*}
\delta_{\mathrm{c}}(k, \tau)=\frac{3}{4} \delta_{\mathrm{r}}(k, \tau)=-\frac{3}{2} \psi_{\mathrm{r}}(k) . \tag{11}
\end{equation*}
$$

- page 209. The correct form of Eq. (8.23) is:

$$
\begin{equation*}
\delta_{\mathrm{c}}(k, y)=3 \psi(y, k)-3 \int^{y} \frac{d w}{w} \int^{w} z \psi(k, z) d z \tag{12}
\end{equation*}
$$

- page 211. A prime is missing in the second term at the left hand side of Eqs. (8.31) and (8.32). The correct form of Eq. (8.31) is

$$
\begin{equation*}
\delta_{\mathrm{c}}^{\prime \prime}+\mathcal{H} \delta_{\mathrm{c}}^{\prime}+k^{2} \psi=0 \tag{13}
\end{equation*}
$$

The correct form of Eq. (8.32) is

$$
\begin{equation*}
\delta_{\mathrm{c}}^{\prime \prime}+\mathcal{H} \delta_{\mathrm{c}}^{\prime}-4 \pi G a^{2} \rho_{\mathrm{c}}\left[\delta_{\mathrm{c}}=0,+\frac{\rho_{\mathrm{r}}}{\rho_{\mathrm{c}}} \delta_{\mathrm{r}}\right] . \tag{14}
\end{equation*}
$$

- page 212. In Eq. (8.36), at the left hand side, we have $\mathcal{H}^{2} / \mathcal{H}^{\prime}$ but this quantity must be inverted. The correct form of Eq. (8.36) is:

$$
\begin{equation*}
2+\frac{\mathcal{H}^{\prime}}{\mathcal{H}^{2}}=\frac{2+3 \alpha}{2(1+\alpha)} \tag{15}
\end{equation*}
$$

- page 213. Equation (8.47). In the argument of the logarithm at the right hand side there should be $\mathrm{a}+$ (rather than $\mathrm{a}-$) in the numerator. The correct form of Eq. (8.47) is:

$$
\begin{equation*}
\Delta(\alpha)=3 \sqrt{\alpha+1}-\left(1+\frac{3}{2} \alpha\right) \ln \left[\frac{\sqrt{\alpha+1}+1}{\sqrt{\alpha+1}-1}\right] \tag{16}
\end{equation*}
$$

- page 218. A " + " sign is missing in Eq. (8.72). The correct form of Eq. (8.72) is

$$
\begin{equation*}
(p+\rho) \theta^{\prime}+\theta\left[\left(p^{\prime}+\rho^{\prime}\right)+4 \mathcal{H}(p+\rho)\right]+\nabla^{2} \delta p+(p+\rho) \nabla^{2} \phi=\frac{4}{3} \eta \nabla^{2} \theta . \tag{17}
\end{equation*}
$$

- page 239. The correct expression of Eq. (8.142) is:

$$
\begin{equation*}
\theta_{\gamma \mathrm{b}} \simeq-\frac{3}{4} \delta_{\gamma}^{\prime}=\frac{3}{4} k c_{\mathrm{sb}}^{3 / 2} C_{1}(k) \sin \left(k \int c_{\mathrm{sb}} d \tau\right) e^{-\frac{k^{2}}{k_{\mathrm{D}}^{2}}} \tag{18}
\end{equation*}
$$

- page 257. The correct form of Eq. (9.62) is:

$$
\begin{equation*}
\Delta_{\mathrm{I}}=-f^{(1)}\left(\frac{\partial \ln f_{0}}{\partial \ln q}\right)^{-1}, \quad \mathcal{F}_{\gamma}=-\Delta_{\mathrm{I}} \frac{\int q^{3} d q f_{0} \frac{\partial \ln f_{0}}{\partial \ln q}}{\int q^{3} d q f_{0}}=4 \Delta_{\mathrm{I}} . \tag{19}
\end{equation*}
$$

- page 282. In Equations (9.192) and (9.193) the subscripts "Th" appearing in the crosssections must be in roman style (i.e. "Th") for consistency with the other equations.
- page 295. Second line prior to Eq. (9.254): "encode" must be corrected and become "encodes".
- page 309. Equation (10.14). At the right hand side of Eq. (10.14) there must be $\delta^{(\mathrm{gi})} p_{\varphi}$ and not $\delta^{(\mathrm{gi)}} \rho_{\varphi}$. The correct form of Eq. (10.14) is

$$
\begin{equation*}
\Psi^{\prime \prime}+\mathcal{H}\left(\Phi^{\prime}+2 \Psi^{\prime}\right)+\left(\mathcal{H}^{2}+2 \mathcal{H}^{\prime}\right) \Phi+\frac{1}{3} \nabla^{2}(\Phi-\Psi)=4 \pi G a^{2} \delta^{(\mathrm{gi})} p_{\varphi} . \tag{20}
\end{equation*}
$$

- page 316. Equation (10.59): the ℓ_{P} appearing at the right hand side should be ℓ_{P}^{2}. The correct form of Eq. (10.59) is then:

$$
\begin{equation*}
\mathcal{P}_{\mathrm{T}}(k)=\ell_{\mathrm{P}}^{2} H^{2} \frac{2^{2 \nu}}{\pi^{3}} \Gamma^{2}(\nu)(1-\epsilon)^{2 \nu-1}\left(\frac{k}{a H}\right)^{3-2 \nu} . \tag{21}
\end{equation*}
$$

- page 318. Equation (10.75). In the first relation there must be a square in the numerator at the right hand side. The correct form of Eq. (10.75) is:

$$
\begin{equation*}
\dot{\varphi}^{2}=\frac{V_{, \varphi}^{2}}{9 H^{2}}, \quad \frac{1}{2 \pi^{2}} \frac{H^{4}}{\dot{\varphi}^{2}}=\frac{1}{12 \pi^{2}} \frac{V}{\epsilon \bar{M}_{\mathrm{P}}} . \tag{22}
\end{equation*}
$$

- page 370. Equations (11.171), (11.172) and (11.173). A factor a^{2} is missing in the first term at the right hand side of each of the mentioned equations. These equations read:

$$
\begin{aligned}
& \mathcal{A}_{\varphi \varphi}=a^{2} \frac{\partial^{2} W}{\partial \varphi^{2}}+4 \pi G\left[4 \frac{\partial W}{\partial \varphi} a^{2}\left(\frac{\varphi^{\prime}}{\mathcal{H}}\right)+\varphi^{\prime 2}\left(4+2 \frac{\mathcal{H}^{\prime}}{\mathcal{H}^{2}}\right)\right] \\
& \mathcal{A}_{\sigma \sigma}=a^{2} \frac{\partial^{2} W}{\partial \sigma^{2}}+4 \pi G\left[4 \frac{\partial W}{\partial \sigma} a^{2}\left(\frac{\sigma^{\prime}}{\mathcal{H}}\right)+\sigma^{\prime 2}\left(4+2 \frac{\mathcal{H}^{\prime}}{\mathcal{H}^{2}}\right)\right] \\
& \mathcal{A}_{\varphi \sigma}=a^{2} \frac{\partial^{2} W}{\partial \sigma \varphi}+4 \pi G\left[2 \frac{\partial W}{\partial \sigma} a^{2}\left(\frac{\sigma^{\prime}}{\mathcal{H}}\right)+2 \frac{\partial W}{\partial \varphi} a^{2}\left(\frac{\varphi^{\prime}}{\mathcal{H}}\right)\right. \\
& \left.+\varphi^{\prime} \sigma^{\prime}\left(4+2 \frac{\mathcal{H}^{\prime}}{\mathcal{H}^{2}}\right)\right] .
\end{aligned}
$$

- page 371. Equation (11.175). The term inside the squared brackets must be $\mathcal{A}_{\sigma \sigma}$ and not $\mathcal{A}_{\varphi \varphi}$. The correct form of Eq. (11.175) is:

$$
\begin{equation*}
q_{\sigma}^{\prime \prime}-\nabla^{2} q_{\sigma}+\left[-\frac{a^{\prime \prime}}{a}+\mathcal{A}_{\sigma \sigma}\right] q_{\sigma}+\mathcal{A}_{\varphi \sigma} q_{\varphi}=0 \tag{23}
\end{equation*}
$$

- page 373. The sentence "Taking then the difference of Eqs. (11.184) and (11.185) and using repeatedly Eq. (11.141) the evolution equation for ϵ_{m} turns out to be..." should read "Taking then the difference of Eqs. (11.183) and (11.184) and using repeatedly Eq. (11.141) the evolution equation for ϵ_{m} turns out to be..."
- page 375. A plus sign must be changed into a minus sign in front of the last term at the left hand side of Eq. (11.196). The correct form of Eq. (11.196) is:

$$
\begin{equation*}
\frac{d \Theta_{\mathrm{g}}}{d \alpha}+\frac{\Theta_{\mathrm{g}}}{\alpha}-\frac{3}{\tau_{1}} \frac{\sqrt{\alpha+1}}{\alpha^{2}} \epsilon_{\mathrm{m}}=0 . \tag{24}
\end{equation*}
$$

- page 414. Equation (A.21). A factor 2 is missing in the second term at the right hand side. The correct form of Eq. (A.21) is:

$$
\begin{equation*}
q_{0}=-\frac{\ddot{a}_{0} a_{0}}{\dot{a}_{0}^{2}}=\frac{\Omega_{\mathrm{M} 0}}{2}+\frac{\left(1+3 w_{\Lambda}\right)}{2} \Omega_{\Lambda 0} . \tag{25}
\end{equation*}
$$

- page 421. An extra comma appears in the expression written in the text after Eq. (B.3). The expression $\sigma \mathcal{E}=\mathcal{E}(\sigma S,, \sigma V, \sigma N)$ must be replaced by $\sigma \mathcal{E}=\mathcal{E}(\sigma S, \sigma V, \sigma N)$.
- page 446. Equation (D.1). In the last relation appearing in Eq. (D.1) an equality sign (i.e. "=") is missing. The correct form of the last relation appearing in Eq. (D.1) is:

$$
\begin{equation*}
\delta_{\mathrm{s}} \Gamma_{0 i}^{j}=-\psi^{\prime} \delta_{i}^{j}+\partial_{i} \partial^{j} E^{\prime} . \tag{26}
\end{equation*}
$$

- page 450. Second line after Eq. (D.27). The incorrect sentence reads:"The velocity fields \bar{v} and v defined in Eqs. (2.8) and (2.16) are not equivalent." This sentence must be corrected as: "The velocity fields \bar{v} and v defined in Eqs. (D.26) and (D.27) are not equivalent."
- page 450. First line after Eq. (D.30). The incorrect sentence reads: "In this book we always define the velocity field as in Eq. (2.8)". This sentence must be corrected as: "In this book we always define the velocity field as in Eq. (D.26)".

[^0]: ${ }^{1}$ Electronic address: massimo.giovannini@cern.ch

