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1Departamento de F́ısica, Facultad de Ciencias Exactas y Naturales,

Universidad Nacional de Mar del Plata,

Funes 3350, 7600 Mar del Plata, Argentina

2Dipartimento di Fisica, Università di Milano,
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Abstract

The effect of Coulomb interactions on charge transport in a model of light emission from an

array of silicon nanoclusters is studied. The array is sandwiched between a p-type and an n-type

doped silicon crystals, and electrons and holes are driven into the array by an applied electric

field. Radiative recombinations of electrons and holes take place around the center of the array

producing the emission of red light. The total emission power is approximately proportional to the

current injected into the system. It is found that carrier-carrier interactions play a crucial role for

charge transport. Specifically, the self-interaction of charges inside a nanocluster drastically limits

the current, yielding a strong non-lineal behavior between current and density of free carriers.

PACS numbers:
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I. MOTIVATION

Most microelectronics devices are made of silicon, so this material should be the natural

choice for anyone designing new devices that will be integrated with microelectronic circuits.

Replacement of metal by silicon optical connectors is an attractive alternative because they

promise to eliminate of power dissipation problems that appear using metal connectors.

However, the electronic structure of silicon does not allow it to emit light readily and ef-

ficiently. This has been partially achieved using porous forms of silicon when illuminated

with an external UV light source. Today, the main goal is to produce light efficiently from

the injection of charges into silicon based devices without to use of such additional light

sources (see, e.g. [1–8]).

In a recent work, a prototype of a silicon nanocluster array has been introduced and stud-

ied theoretically [9]. The model consists of an assembly of silicon nanoclusters sandwiched

between p- and n-type doped silicon crystals, which act as charge reservoirs of holes and

electrons, respectively. The carriers are driven by an applied electric field into the silicon

array where they recombine (producing red light when radiative recombinations take place).

It was found that the efficiency of the light emission is quite large, between about 2% and

0.5% for fields ranging from 100 to 500 kV/cm, respectively, at the temperature T = 300 K.

The light emission takes place near the center of the array, where nanoclusters of linear size

of about 3.6 nm are located, and the total emission power is approximately proportional to

the total current injected into the system.

Due to the small size of the nanoclusters, two different effects appear. One effect is

quantum-confinement which allows visible light emission with rather large yield. For ex-

ample, a silicon nanocluster of diameter 3.6 nm has a yield of 1/3 [6] (i.e., on average, for

every three electron-hole recombinations one photon is produced) and light emission is in

the visible red. A second effect is the existence of unscreened Coulomb self-interaction be-

tween charges inside a nanocluster. This interaction is not present in ordinary crystalline

semiconductors because charge confinement does not take place in the bulk. Thus, we must

deal with this type of interaction in the study of charge transport in nanocluster arrays.

The main purpose of the present work is to study, from a basic theoretical point of

view, the effects of Coulomb interactions on charge transport in the array of nanoclusters

introduced in Ref. [9]. This study is also related to the total power light emission since
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current and emission power are approximately proportional to each other.

II. ARRAY GEOMETRY AND DIFFERENT INTERACTION MODELS

The geometry of the array considered here is illustrated in Fig. 1. The p and n boxes

at the border represent the p- and n-type doped silicon crystals. The circles symbolize the

one-dimensional chain of nanoclusters of different sizes (larger at the ends and smaller at

the center of the array).
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FIG. 1: Schematic illustration of the one-dimensional array of Si nanoclusters. The lower part of

the figure illustrates the corresponding energy levels of the neutral system in the absence of an

external field. The relation between optical gap E and radius R of each nanocluster is given by

Eq. (1). The optical gaps in the boxes take their bulk value 1.17 eV. In the stationary state, most

of the photons (of ≈ 1.8 eV) will be emitted from the center of the system. The Fermi energy of

the array, εF, is indicated by the short dashed line. The uppermost arrow indicates the direction of

the applied electric field, ~F , pointing in the forward bias direction to bring electrons e (small filled

circle) and holes h (small open circle) from the borders to the center of the system. The dotted

lines are drawn to guide the eye.

In intrinsic silicon nanoclusters the optical gap E between electron and hole energy levels

depends on its size approximately as,

R(E) =
13 (eV)0.72

(E − EBulk)0.72
Å. (1)

Electron-hole recombinations are assumed to take place when both the electron and the hole

are present inside the same nanocluster. The recombination can be radiative (producing a
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photon) or non-radiative (producing a phonon). For E in the range 1.2 eV < E < 2 eV,

and at a temperature T = 300 K, the radiative recombination time is estimated to be [12]

τrad(E) =
7.7 × 10−4 (eV)1.38

(E − Erad)1.38
s, (2)

where Erad = 1.137 eV. From [6] the non-radiative recombination time, τnrad(E) can be

calculated (for more details see [9]) as

τnrad(E) =
Y (R)

1 − Y (R)
τrad(E), (3)

where the photoluminescence yield, Y (E) ≡ τnrad/(τrad + τnrad), behaves as Y (E) =

4.4 exp(−2R/14Å), for R ≥ 18 Å.

From Eqs. (1)-(3) and for a given value of the gap E, one obtains the radius R of the

nanocluster and its radiative and non-radiative recombination times, τrad and τnrad.

In the models, hopping of carriers is studied by Monte Carlo simulations. Hopping

processes occur between nearest-neighbor NC, or between a box and its neighboring NC.

The corresponding hopping time is taken as τhop = 5×10−3 s. If a particle (electron or hole)

is selected, say at site i, it can either hop to one of the two neighboring sites or remain at

i. A hop occurs with a probability

pi→j = phop exp(−β∆Etot), for ∆Etot > 0, and

pi→j = phop, otherwise, (4)

where phop = τ0/τhop, τ0 is the time unit, ∆Etot = E
(after)
tot −E

(before)
tot the variation of the total

energy of the system for the attempted jump from site i to j, and β = 1/KBT .

The Etot is given by

Etot({ne, nh}) =
N

∑

i=1

[(

Ei

2
+

EBulk

2LNC

(LNC − 2xi)

)

ne(i) +

(

Ei

2
+

EBulk

2LNC

(2xi − LNC)

)

nh(i)

]

+EBulk(ne(0) + nh(N + 1)) +
N

∑

i=1

N
∑

j=i

Vi,j −

N
∑

i=1

Fxiqi − eU(nh(N + 1) − ne(N + 1)) , (5)

where the first two terms account for the energy of the particles occupying site i with respect

to the Fermi level, the third term represents the total Coulomb interaction, and the last two

terms the potential energy of carriers due to the external field.

The effective Coulomb interaction between the net charges qi at xi and qj at xj is given

by

Vi,j =
qiqj

εeff |xi − xj|
, for i 6= j , (6)
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where qi = e(nh(i)−ne(i)), and nh(i), ne(i) are the occupation numbers of h and e at the ith

NC (1 ≤ i ≤ N), and e > 0 is the unit electric charge. To be noted is that the occupation

numbers nh(0) and ne(N + 1) (i.e. the sources of electric charges in the boxes) are kept

constant all over the simulations. Here we use N = 400.

Inside a single NC, the self-interaction of charges is estimated as

Vi,i =
q2
i

εeffRi

. (7)

We take εeff = 2 which is close to the value of the dielectric constant in porous Si [14].

In order to study the effects of the Coulomb interaction, the following three different

models have been studied using Monte Carlo simulations:

Model A: In this model we use the complete Hamiltonian given by Eq. (5) where the

terms Vi,j are present for all i and j. (i.e., the full Coulomb interactions are present).

Model B: In this model we use the Hamiltonian (5) with all Vi,j = 0 (i.e., without Coulomb

interaction).

Model C: In this model we use the Hamiltonian (5) with Vi,j = 0 for all i different from

j (i 6= j) (i.e., only Coulomb self-interactions are present).

III. RESULTS AND CONCLUSIONS

For illustrative purposes, we consider here the case in which nh(0) = ne(N + 1) = 8.

For models A, B and C the results of the current density J as a function of the electric

field F are shown in Fig. 2. In the limit F → ∞ all the nh(0) and ne(N + 1) in the p

and n-boxes, respectively, jumps to the array in a time τhop. Then the maximum value

Jmax = enh(0)/ (d2
0τhop) = 6.4 × 10−5 A/cm2 is reached (d0 is the size associated to the p-

and n-type semiconductors). From Fig. 2 one can see that this value is obtained for the

three models and large enough values of F .

Large difference between the values of J for the cases with (model A and C) and without

(model B) Coulomb interaction are obtained. Specially in the region of F < 800 kV/cm

which corresponds to experimentally realistic values of fields. For example, for F = 100

kV/cm one obtains J = 0.92 × 10−6 A/cm2, and J = 49.4 × 10−6 A/cm2 for models A

and B, respectively (i.e., the ratio between them is greater than one order of magnitude).

And for F = 500 kV/cm one obtains J = 5.7 × 10−6 A/cm2, and J = 63.8 × 10−6 A/cm2
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FIG. 2: Current density J versus applied electric field F . The maximum value Jmax is obtained

when the ne(N +1) = 8 electrons and the nh(0) = 8 holes hop in the time τhop from n- and p-boxes

to the array, respectively.
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FIG. 3: Current density J versus applied electric field F for models A and C. The data were

obtained using εeff = 2.0 for model A and εeff = 0.8 for model C (see Eqs. (6), (7), and (5)). The

inset shown the same results but for F ranging from 100 to 800 kV/cm.

for models A and B, respectively. Then, the carrier-carrier interactions must be taken into

account in realistic simulations of charge transport in nanoclaster arrays. Specifically, these

interactions can be considered in two terms, the long-range Coulomb interaction (see Eq. (6)
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FIG. 4: Light emission spectrum of the NC array versus energy E for model A (squares) and model

C with εeff = 0.8 (circle). These results were obtained for two different values of F : F = 300 kV/cm

(filled symbols), and F = 900 kV/cm (empty symbols). The total emission in each case is found to

be: Pph = 6.73×10−18 W (filled squares), Pph = 5.88×10−18 W (filled circles), Pph = 2.68×10−17

W (empty squares) and Pph = 2.63×10−17 W (empty circles). Although the total emission for the

same value of F are similar the spectrum is shifted to the red when the terms Vi,j = 0 for i 6= j.

and the Coulomb self-interaction (see Eq. (7)). The second term is much important than

the first one, because:

(a) If the Coulomb self-interaction is considered, the effects of Vi,j for i 6= j, are of minor

importance. The results obtained from model C are not too much different from those

obtained from model A. Moreover, one can obtain similar results neglecting the long-range

interaction term, and using a modified value of εeff in Eq. (7) (see Figs. 3 and 4).

(b) If the self-interaction is neglected and also the long-range interactions are not taken

into account, one has the model B. And the results obtained from model B and A are quite

different (see Fig. 2). The Coulomb self-interaction limits the injection of carriers into the

nanocluster array from the p- and n-boxes.

One concludes that the Coulomb self-interaction plays a crucial role in charge transports

in nanocluster arrays.

[1] L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

7



[2] L. Pavesi, J. Phys.: Condensed Matter 15, 1169 (2003).

[3] M. H. Nayfeh, S. Rao, N. Barry, J. Therrien, G. Belomoin, A. Smith, and S. Chaieb, Appl.

Phys. Lett. 80, 121 (2002).

[4] A. Fujiwara, K. Yamazaki, and Y. Takahashi, Appl. Phys. Lett. 80, 4567 (2002).
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