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Abstract

We discuss empirical data associated to the Dow-Jones Industrial Av-

erage stock market index over a daily basis during the period 1928-2007.

We study the statistical properties of the logarithmic daily variations

of the index, such as the probability distribution function and autocor-

relation functions, for both log-returns and their absolute values. We

consider in particular the effect of detrending the empirical data with

polynomial functions of different degrees and find that stationary results

are obtained for degrees larger than about four. A model based on an

autoregressive scheme with long-time memory is briefly discussed.
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1 Introduction

Stock price variations generally behave independently to past changes on not
too short time scales, behavior believed to be due to the so-called noise traders.
Roughly speaking, this fact is traditionally interpreted by affirming that once
a transaction has taken place all the information governing the price change is
already contained in the price itself (the so-called efficient market hypothesis,
EMH, see for instance [1]).

There are other intriguing issues related to the behavior of stock markets
which make them so fascinating and challenging, that is, their non-stationarity

1



and the long-time autocorrelation functions for absolute price returns. In this
paper we address these two issues and study for simplicity a single time series,
corresponding to a large and liquid market, the Dow Jones Industrial Average
(DJIA) (see e.g. [2]).

We consider the logarithm of the index as variable and study the statistical
behavior of the log-returns and its absolute values. We show that a trend
present in the daily log-returns can be described by a polynomial of degree
L, with 0 ≤ L ≤ 5 giving the most relevant results for our purposes. The
probability distribution function (PDF) of log-returns is calculated for the raw
data and for each set of detrended values depending on the degree L. We
find that stationary results are obtained already for L ' 4 and discuss results
for the case L = 5. We find that the autocorrelation function for absolute
log-returns displays a power-law decay with an exponent ' −0.2 for the raw
data, decreasing down to about −0.4 for the detrended case with L = 5. A
model based on an autoregressive process with long-range memory is discussed
to generate surrogate data with similar statistical properties.

2 Daily log-returns for the DJIA (1928-2007)

In this section, we consider logarithmic Index returns and their PDF. We dis-
cuss the issues of non-stationarity, detrending of the data and the asociated
auto-correlation functions of log- and absolute-log returns.

2.1 Log-returns and the PDF

The quantity of interest to us is the logarithmic price return (or simply log-
return),

∆S
(n)
t = log Pn(t) − log Pn(t − 1), (1)

where Pn(t) is the closing price of market Index n at trading day t. Here, n
stands for the DJIA and 1 ≤ t ≤ T , with T = 20000 trading days corresponding
to the period (1928-2007). In order to study the PDF of log-returns, we consider
the scaled variable,

y
(n)
t =

1

Σn

[

∆S
(n)
t −

〈

∆S
(n)
t

〉

T

]

, (2)

where Σn is the standard deviation of log-returns over the T trading days for the

index n, and
〈

∆S
(n)
t

〉

T
is the corresponding mean value. The PDF associated

to y
(n)
t , Pn(y), has zero mean and unit variance. In the following, we discard

the label n from the resulting expressions and denote the PDF simply as P (y).
Log-returns for the DJIA are shown in Fig. 1 as a function of the trading

day. The data starts at year 1928 and therefore the first few data points
correspond to the 1929 famous market crash. Despite it, the largest one day
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Figure 1: The absolute values of log-returns for the DJIA as a function of the
trading day in semi-log scale. Raw data taken from [2]. The peak around day
15000 corresponds to black monday crash (19 October 1987). The continuous
line is a polynomial fit of fifth degree (L = 5). For comparison we show results
drawn from a Gaussian distribution with the same standard deviation as the
empirical data (data shifted upwards for convenience). The dashed line is a
polynomial fit of third degree, indicating a constant standard deviation.

variation occurred in October 1987, during the so-called black monday. As
one can see, the amplitude of log-returns are not constant over the time, but
fluctuate somehow wildly over the years. This behavior can be compared with
the standard one, i.e. a constant ‘volatility’ process, of a Gaussian variable
displaying the same Σn (see upper curve in Fig. 1). Regarding the empirical
data, we show in the same plot the fifth-degree polynomial fit (continuous line),

denoted as P5(t), yielding the detrended log-returns ∆S
(5)
t = ∆St − P

(5)
t .

The PDF’s are shown in Fig. 2 in the cases of the raw data (upper panel)

and detrended ones ∆S
(5)
t (lower panel). As one can see, the main effect of the

5th-degree polynomial trend on the PDF is the narrowing of its shape, which
in our power-law representation of the distribution leads to a larger power-law
exponent of about −3.5 compared to the raw-data one of −3.1.

Due to the limited data presently available for the DJIA, we can not draw
a definitive conclusion about the shape of the PDFs in neither case, but the
present results suggest in fact a ‘lesser-fat-tailed’ distribution for the detrended
log-returns. We consider next the issue of autocorrelations and discuss the
effects of trends on them.
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Figure 2: The PDF of log-returns for the DJIA (1928-2007). (Upper panel)
Raw data: The line is a fit with the form F = 0.58/(1+ |y/0.73|3.1). The inset
shows the PDF of absolute returns, P (|y|) (scale to the right side), and for the
fit, in a double-logarithmic plot. (Lower panel) Detrended data using a fifth
degree polynomial. The line is a fit with the form F = 0.55/(1 + |y/0.87|3.5)
and the inset shows the absolute log-return counterparts in double-log scale.

2.2 Autocorrelations

The EMH implies that the autocorrelation function of log-returns, defined as
Cy(τ) =

〈

yt+τ yt

〉

T
, vanishes for all time scales |τ | > 0, i.e. Cy(τ) = δτ,0.

This has been verified numerically for the present data, as shown in Fig. 3.
More intriguing is the behavior of the autocorrelation function of absolute log-

returns, C|y|(τ) =
(

〈

|yt+τ | |yt|
〉

T
−

〈

|yt|
〉2

T

)

/Σ2, where Σ2 =
〈

|yt|
2
〉

T
−

〈

|yt|
〉2

T
,
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Figure 3: The autocorrelation function of log-returns for the DJIA (1928-2007).
The horizontal continuous lines represent the noise level, within which the
function is considered to vanish.

which is shown in Fig. 4, suggesting a very slow power-law decay, C|y|(τ) ∼ τ−γ ,
with γ ' 0.2, at least up to about 200 days. Remarkable is the effect of trends

on C|y|(τ), which we have calculated for ∆S
(5)
t and displayed by the square

symbols in Fig. 4. Now, the autocorrelations are much weaker, with a decaying
exponent γ ' 0.4.

3 Long-range memory and stochastic volatility

In this section, we consider the modeling of log-returns using an autoregressive
model with conditional heteroskedasticity (ARCH) supplemented by the pres-
ence of a long-range memory for the standard deviation or volatility. The asset
log-return at time step t, here denoted as ∆Xt, is modeled according to,

∆Xt = σt ηt, with σ2
t = a + b [∆XAB(t − 1)]2, (3)

where ηt are uncorrelated random numbers drawn from a normal distribution
(zero mean and unit variance), σt obeys an ARCH-type [3] recursion relation
with a and b positive constants, and ∆XAB(t) is a long-time correlated variable,
based on a fractional Brownian motion [4], defined as [5],

∆XAB(t) =
∆Xt

CH(t)
+

t−1
∑

j=1

[

(2j + 1)β

CH(t)
−

(2j − 1)β

CH(t − 1)

]

∆Xt−j , t ≥ 1, (4)
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Figure 4: The autocorrelation function of absolute log-returns for the DJIA
(1928-2007) for the: Raw data (full circles), and detrended data (full squares)
using a polynomial of fifth degree (see Fig. 1). The lines are power-law forms
with slopes: γ = −0.18 (continuous line) and −0.40 (dashed line), respectively.
The dashed-dotted line represents the noise level.

where C2
H(t) = 1 +

∑t−1
i=1 κ2

j (β), β = (1 − γ)/2 and ∆X0 = 0. The above
model is found to yield results consistent with the empirical data, and is able
to describe accurately the so-called ‘leverage effect’ observed in log-returns [6].
More details on this interesting issue will be presented elsewhere.
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