Lattice QCD with light quarks compares to chiral perturbation theory

Leonardo Giusti

CERN - Theory Group

In Collaboration with L. Del Debbio (Edinburgh), M. Lüscher (CERN), R. Petronzio and N. Tantalo (Tor Vergata)
The Wilson action for the $SU(3)$ Yang–Mills theory is ($\beta = 6/g^2$)

$$S_{YM} = \beta \sum_{x, \mu < \nu} \left\{ 1 - \frac{1}{6} \text{Tr} \left[U_{\mu\nu}(x) + U_{\mu\nu}^\dagger(x) \right] \right\}$$

$$U_{\mu\nu}(x) = U_\mu(x)U_\nu(x + \mu)U_\mu^\dagger(x + \nu)U_\nu^\dagger(x)$$

Periodic boundary conditions for gauge fields
QCD with two degenerate flavors with the Wilson action

The fermion Wilson action we use is

\[S_F = \sum_{i=1}^{2} \sum_{x,y} \bar{\psi}_i(x) D_m(x, y) \psi_i(y) \]

\[\psi \equiv \{ \psi_1, \psi_2 \} \]

\[D_m = \frac{1}{2} \left\{ \gamma_{\mu} \left(\nabla^*_{\mu} + \nabla_{\mu} \right) - a \nabla^*_{\mu} \nabla_{\mu} \right\} + m_0 \]

where \(am_0 = (1/k - 8)/2 \) and

\[\nabla_{\mu} \psi_i(x) = \frac{1}{a} \left[U_{\mu}(x) \psi_i(x + a\hat{\mu}) - \psi_i(x) \right] \]

\[\nabla^*_{\mu} \psi_i(x) = \frac{1}{a} \left[\psi_i(x) - U_{\mu}^{\dagger}(x - a\hat{\mu}) \psi_i(x - a\hat{\mu}) \right] \]

Fermion fields with periodic boundary conditions in space and anti-periodic in time
It is possible to define renormalized operators

\[\hat{A}_\mu^a(x) = Z_A A_\mu^a(x) \quad A_\mu^a(x) = \bar{\psi}(x)\gamma_\mu\gamma_5 \frac{\sigma^a}{2} \psi(x) \]

\[\hat{P}^a(x) = Z_P P^a(x) \quad P^a(x) = \bar{\psi}(x)\gamma_5 \frac{\sigma^a}{2} \psi(x) \]

that satisfy renormalized axial Ward identities of the form

\[\partial_\mu \langle \hat{A}_\mu^a(x) \hat{P}^a(0) \rangle = 2 \hat{m} \langle \hat{P}^a(x) \hat{P}^a(0) \rangle + \mathcal{O}(a) \quad x \neq 0 \]

The “on-shell” non-perturbative definition of the quark mass is

\[m = \frac{1}{2} \frac{\partial_\mu^* \langle A_\mu^a(x) P^a(0) \rangle}{\langle P^a(x) P^a(0) \rangle} \quad \hat{m} = \frac{Z_A}{Z_P} m \]
Non-linear sigma model with two degenerate flavors

- The fundamental fields

\[U \equiv \exp \left\{ \frac{2i}{F} \Phi \right\}, \quad \Phi = \sum_a \phi^a \sigma^a \]

transforms under chiral symmetry as

\[U \rightarrow V_R U V_L^\dagger, \quad U^\dagger \rightarrow V_L U^\dagger V_R^\dagger \]

with \(V_L V_L^\dagger = I \) and \(V_R V_R^\dagger = I \)

- The \(\mathcal{O}(p^2) \) Euclidean action which encodes the SSB is

\[S^{(2)} = \int d^4x \frac{F^2}{4} \left\{ \text{Tr} \left[\partial_\mu U^\dagger \partial_\mu U \right] - M^2 \text{Tr} \left[U^\dagger + U \right] \right\} \]

where \(M^2 = 2B\hat{m} \)
Meson mass and decay constant at NLO

The $\mathcal{O}(p^4)$ Euclidean Action is given by

\[
S^{(4)} = \int d^4x \left\{ \frac{M^4(\hat{l}_4 - \hat{l}_3)}{16} \text{Tr}[U^\dagger + U] \text{Tr}[U^\dagger + U] + \right.
\]

\[
\frac{M^2\hat{l}_4}{8} \text{Tr}[\partial_\mu U^\dagger \partial_\mu U] \text{Tr}[U^\dagger + U] + \text{four deriv. terms} \right\}
\]

The meson mass and decay constant at $\mathcal{O}(p^4)$ are given by

\[
M^2_P = M^2 \left\{ 1 + \frac{M^2}{32\pi^2 F^2} \log \left(\frac{M^2}{\mu^2} \right) + \frac{2M^2}{F^2} \hat{l}_3(\mu) \right\}
\]

\[
F_P = F \left\{ 1 - \frac{M^2}{16\pi^2 F^2} \log \left(\frac{M^2}{\mu^2} \right) + \frac{M^2}{F^2} \hat{l}_4(\mu) \right\}
\]
Matching a non-linear sigma model with the experiment: M_P^2 Gasser Leutwyler 84

If we define

$$\hat{l}_3(\mu) = \frac{-1}{64\pi^2} \left(l_3 + \log \left(\frac{M^2}{\mu^2} \right) \right) \bigg|_{M=139.6\text{MeV}}$$

$$\bar{l}_3 = \log \left(\frac{\Lambda^2}{M^2} \right) \bigg|_{M=139.6\text{MeV}}$$

then

$$M_P^2 = M^2 \left(1 + \frac{M^2}{32\pi^2 F^2} \log \left(\frac{M^2}{\Lambda^2} \right) \right)$$

A crude estimate from experimental values of meson masses gives

$$\bar{l}_3 = 2.9 \pm 2.4$$
If we define

\[\hat{l}_4(\mu) = \frac{1}{16\pi^2} \left(\bar{l}_4 + \log \left(\frac{M^2}{\mu^2} \right) \right) \bigg|_{M=139.6\text{MeV}} \]

\[\bar{l}_4 = \log \left(\frac{\Lambda_F^2}{M^2} \right) \bigg|_{M=139.6\text{MeV}} \]

then

\[F_P = F \left\{ 1 - \frac{M^2}{16\pi^2 F^2} \log \left(\frac{M^2}{\Lambda_F^2} \right) \right\} \]

An estimate from the scalar radius of the pion gives

\[\bar{l}_4 = 4.4 \pm 0.2 \]
Decomposition of the lattice into blocks with Dirichlet b.c. with \(q \geq \pi / L > 1 \) GeV

Asymptotic freedom: quarks are weakly interacting in the blocks \(\Rightarrow \) QCD easy (cheaper) to simulate

Block interactions are weak and are taken into account exactly

\[
S(x, y) \sim \frac{1}{|x - y|^3}
\]
Block decomposition of the Dirac operator

The Wilson–Dirac operator

\[D_m = \frac{1}{2} \left\{ \gamma_\mu (\nabla^*_\mu + \nabla_\mu) - \nabla^*_\mu \nabla_\mu \right\} + m_0 \]

can be decomposed as

\[D = D_{\Omega^*} + D_\Omega + D_{\partial \Omega^*} + D_{\partial \Omega} \]

where

\[D_{\Omega^*} = \sum_{\text{white } \Lambda} D_\Lambda \quad D_\Omega = \sum_{\text{black } \Lambda} D_\Lambda \]

\(\Omega^*, \Omega \) are white and black blocks, \(\partial \Omega, \partial \Omega^* \) are exterior boundaries
The determinant of the Dirac operator written as

$$\det D_W = \prod_{\text{all } \Lambda} \det \hat{D}_\Lambda \det R$$

with the block interaction

$$R = 1 - P_{\partial \Omega^*} D_\Omega^{-1} D_{\partial \Omega} D_{\Omega^*}^{-1} D_{\partial \Omega^*}$$

For two flavors can be written as integral over scalar fields

$$S_{\phi \chi} = \sum_{\text{all } \Lambda} \| \hat{D}_\Lambda^{-1} \phi_\Lambda \|^2 + \| R^{-1} \chi \|^2$$

where ϕ_Λ defined on Λ and χ on $\partial \Omega^*$.
In molecular dynamics force naturally split

\[
\frac{d}{dt} \Pi(x, \mu) = -F_G(x, \mu) - F_\Lambda(x, \mu) - F_R(x, \mu)
\]

\[
\frac{d}{dt} U(x, \mu) = \Pi(x, \mu) U(x, \mu)
\]

Integration step-sizes chosen such that

\[
\epsilon_G \|F_G\| \sim \epsilon_\Lambda \|F_\Lambda\| \sim \epsilon_R \|F_R\|
\]

i.e. the most expensive force computed less often!

Do not give up first-principles: teach Physics to exact algorithms for being smarter (faster)!

\[
C_{\text{ost}} \propto m_q^{-1}
\]
Collaboration: L. Del Debbio (Edinburgh), L. G. and M. Lüscher (CERN), R. Petronzio and N. Tantalo (Tor Vergata)

Fermi Institute PC cluster with 80 nodes (160 Xeon procs)
64 nodes used for this project (≈200 Gflops sustained)

Bern Physics Institute PC cluster with 32 nodes (64 Xeon procs)
8 nodes used for this project (≈25 Gflops sustained)

CERN PC cluster with 32 nodes (64 Xeon procs)
All nodes used for this project (≈160 Gflops sustained)
Parameters of the runs with the Wilson action

<table>
<thead>
<tr>
<th>k</th>
<th>N_{trj}</th>
<th>N_{sep}</th>
<th>N_{conf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15750</td>
<td>6400</td>
<td>100</td>
<td>64</td>
</tr>
<tr>
<td>$V = 24^3 \times 32$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15800</td>
<td>10900</td>
<td>100</td>
<td>109</td>
</tr>
<tr>
<td>$\beta = 5.6$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15825</td>
<td>10000</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.15835</td>
<td>5000</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>$V = 32^3 \times 64$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15410</td>
<td>5000</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>$\beta = 5.8$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15440</td>
<td>5050</td>
<td>50</td>
<td>101</td>
</tr>
<tr>
<td>0.15455</td>
<td>5200</td>
<td>50</td>
<td>104</td>
</tr>
<tr>
<td>0.15462</td>
<td>5100</td>
<td>50</td>
<td>102</td>
</tr>
</tbody>
</table>

Parameter ranges:

1. $m \sim \frac{1}{4} m_s - m_s$
2. $a \sim 0.050 - 0.075$ fm
3. $L \sim 1.75$ fm

All confs archived @ CERN

All following results preliminary!
Pseudoscalar meson mass

\[
\begin{array}{cc}
 k & aM_P \\
 0.15750 & 0.2744(21) \\
 V = 24^3 \times 32 & 0.15800 & 0.1969(16) \\
 \beta = 5.6 & 0.15825 & 0.1554(31) \\
 t_1 - t_2 = 12 - 16 & 0.15835 & 0.1204(44) \\
 24^3 \times 32 & 0.15410 & 0.1965(8) \\
 \beta = 5.8 & 0.15440 & 0.1481(11) \\
 t_1 - t_2 = 18 - 32 & 0.15462 & 0.1040(12) \\
 24^3 \times 64 & 0.15455 & 0.1151(12) \\
 \end{array}
\]

Pseudoscalar meson mass extracted from

\[
C_{PP}(t) = \sum_{\vec{x}} \langle P^a(x) P^a(0) \rangle
\]

by fitting the effective mass to a plateaux
Pseudoscalar meson mass

<table>
<thead>
<tr>
<th>k</th>
<th>aM_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15750</td>
<td>0.2744(21)</td>
</tr>
<tr>
<td>$V = 24^3 \times 32$</td>
<td>0.15800</td>
</tr>
<tr>
<td>$\beta = 5.6$</td>
<td>0.15825</td>
</tr>
<tr>
<td>$t_1 - t_2 = 12 - 16$</td>
<td>0.15835</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k</th>
<th>aM_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15410</td>
<td>0.1965(8)</td>
</tr>
<tr>
<td>$V = 32^3 \times 64$</td>
<td>0.15440</td>
</tr>
<tr>
<td>$\beta = 5.8$</td>
<td>0.15455</td>
</tr>
<tr>
<td>$t_1 - t_2 = 18 - 32$</td>
<td>0.15462</td>
</tr>
</tbody>
</table>

Pseudoscalar meson mass extracted from

$$C_{PP}(t) = \sum_{\vec{x}} \langle P^\alpha(\vec{x}) P^\alpha(0) \rangle$$

by fitting the effective mass to a plateaux
Pseudoscalar decay constant

<table>
<thead>
<tr>
<th>(k)</th>
<th>(aF_P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15750</td>
<td>0.0648(8)</td>
</tr>
<tr>
<td>(V = 24^3 \times 32)</td>
<td>0.15800</td>
</tr>
<tr>
<td>(\beta = 5.6)</td>
<td>0.15825</td>
</tr>
<tr>
<td>(t_1 - t_2 = 13 - 16)</td>
<td>0.15835</td>
</tr>
<tr>
<td></td>
<td>0.15410</td>
</tr>
<tr>
<td>(V = 32^3 \times 64)</td>
<td>0.15440</td>
</tr>
<tr>
<td>(\beta = 5.8)</td>
<td>0.15455</td>
</tr>
<tr>
<td>(t_1 - t_2 = 18 - 32)</td>
<td>0.15462</td>
</tr>
</tbody>
</table>

Pseudoscalar decay constant extracted by combining \(C_{PP}(t)\) with

\[
C_{AP}(t) = \sum_x \langle A_0^a(x) P^a(0) \rangle
\]

and by fitting the effective decay constant to a plateaux
Pseudoscalar decay constant

<table>
<thead>
<tr>
<th>κ</th>
<th>aF_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15750</td>
<td>0.0648(8)</td>
</tr>
<tr>
<td>$V = 24^3 \times 32$</td>
<td>0.15800</td>
</tr>
<tr>
<td>$\beta = 5.6$</td>
<td>0.15825</td>
</tr>
<tr>
<td>$t_1 - t_2 = 13 - 16$</td>
<td>0.15835</td>
</tr>
<tr>
<td>0.15410</td>
<td>0.0457(4)</td>
</tr>
<tr>
<td>$V = 32^3 \times 64$</td>
<td>0.15440</td>
</tr>
<tr>
<td>$\beta = 5.8$</td>
<td>0.15455</td>
</tr>
<tr>
<td>$t_1 - t_2 = 18 - 32$</td>
<td>0.15462</td>
</tr>
</tbody>
</table>

Pseudoscalar decay constant extracted by combining $C_{PP}(t)$ with

$$C_{AP}(t) = \sum_{\vec{x}} \langle A_0^a(x) P^a(0) \rangle$$

and by fitting the effective decay constant to a plateaux.
Quark mass

<table>
<thead>
<tr>
<th>k</th>
<th>$2am$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15750</td>
<td>0.05477(53)</td>
</tr>
<tr>
<td>$V = 24^3 \times 32$</td>
<td>0.15800 0.02853(31)</td>
</tr>
<tr>
<td>$\beta = 5.6$</td>
<td>0.15825 0.01724(42)</td>
</tr>
<tr>
<td>$t_1 - t_2 = 8 - 16$</td>
<td>0.15835 0.01107(44)</td>
</tr>
<tr>
<td>0.15410</td>
<td>0.03898(16)</td>
</tr>
<tr>
<td>$V = 32^3 \times 64$</td>
<td>0.15440 0.02170(11)</td>
</tr>
<tr>
<td>$\beta = 5.8$</td>
<td>0.15455 0.01417(12)</td>
</tr>
<tr>
<td>$t_1 - t_2 = 7 - 32$</td>
<td>0.15462 0.01139(16)</td>
</tr>
</tbody>
</table>

Quark mass extracted from

\[2m(t) = \frac{\partial_l^* C_{AP}(t)}{C_{PP}(t)} \]

by fitting to a plateaux
Quark mass

<table>
<thead>
<tr>
<th>k</th>
<th>$2am$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15750</td>
<td>0.05477(53)</td>
</tr>
<tr>
<td>$V = 24^3 \times 32$</td>
<td>0.15800</td>
</tr>
<tr>
<td>$\beta = 5.6$</td>
<td>0.15825</td>
</tr>
<tr>
<td>$t_1 - t_2 = 8 - 16$</td>
<td>0.15835</td>
</tr>
<tr>
<td>0.15410</td>
<td>0.03898(16)</td>
</tr>
<tr>
<td>$V = 32^3 \times 64$</td>
<td>0.15440</td>
</tr>
<tr>
<td>$\beta = 5.8$</td>
<td>0.15455</td>
</tr>
<tr>
<td>$t_1 - t_2 = 7 - 32$</td>
<td>0.15462</td>
</tr>
</tbody>
</table>

Quark mass extracted from

$$2m(t) = \frac{\partial_t^* C_{AP}(t)}{C_{PP}(t)}$$

by fitting to a plateaux
Statistical gain with five sources

Two-point pseudoscalar correlation functions computed for 5 sources

<table>
<thead>
<tr>
<th>k</th>
<th>$2am$</th>
<th>aM_P</th>
<th>aF_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = 24^3 \times 32$</td>
<td>0.15750 0.05477(53)[58][71]</td>
<td>0.2744(21)[27][31]</td>
<td>0.0648(8)[11][14]</td>
</tr>
<tr>
<td>$\beta = 5.6$</td>
<td>0.15800 0.02853(31)[41][47]</td>
<td>0.1969(16)[19][29]</td>
<td>0.0544(9)[12][18]</td>
</tr>
<tr>
<td></td>
<td>0.15825 0.01724(42)[49][55]</td>
<td>0.1554(31)[38][33]</td>
<td>0.0500(17)[23][30]</td>
</tr>
<tr>
<td></td>
<td>0.15835 0.01107(44)[53][52]</td>
<td>0.1204(44)[49][66]</td>
<td>0.0461(23)[28][31]</td>
</tr>
<tr>
<td>$V = 32^3 \times 64$</td>
<td>0.15410 0.03898(16)[18][19]</td>
<td>0.1965(8)[9][13]</td>
<td>0.0457(4)[6][8]</td>
</tr>
<tr>
<td>$\beta = 5.8$</td>
<td>0.15440 0.02170(11)[13][15]</td>
<td>0.1481(11)[12][14]</td>
<td>0.0379(4)[5][8]</td>
</tr>
<tr>
<td></td>
<td>0.15455 0.01417(12)[13][14]</td>
<td>0.1151(12)[14][15]</td>
<td>0.0347(4)[6][8]</td>
</tr>
<tr>
<td></td>
<td>0.15462 0.01139(16)[16][19]</td>
<td>0.1040(12)[13][16]</td>
<td>0.0339(6)[8][10]</td>
</tr>
</tbody>
</table>

A general error reduction observed

A clear pattern of error reduction in F_P
Finite volume corrections

<table>
<thead>
<tr>
<th></th>
<th>(k)</th>
<th>(2,a,m)</th>
<th>(a^2 M_P^2)</th>
<th>(a F_P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V = 24^3 \times 32)</td>
<td>0.15750</td>
<td>0.05477(53)</td>
<td>0.0753(11)</td>
<td>0.0648(8)</td>
</tr>
<tr>
<td>(\beta = 5.6)</td>
<td>0.15800</td>
<td>0.02853(31)</td>
<td>0.0388(6)</td>
<td>0.0544(9)</td>
</tr>
<tr>
<td></td>
<td>0.15825</td>
<td>0.01724(42)</td>
<td>0.0241(10)</td>
<td>0.0500(17)</td>
</tr>
<tr>
<td>(V = 32^3 \times 64)</td>
<td>0.15410</td>
<td>0.03898(16)</td>
<td>0.0386(3)</td>
<td>0.0379(4)</td>
</tr>
<tr>
<td>(\beta = 5.8)</td>
<td>0.15440</td>
<td>0.02170(11)</td>
<td>0.0219(3)</td>
<td>0.0347(4)</td>
</tr>
<tr>
<td></td>
<td>0.15455</td>
<td>0.01417(12)</td>
<td>0.0132(3)</td>
<td>0.0339(6)</td>
</tr>
</tbody>
</table>

Meson masses and decay constants at \(O(p^4)\) in finite volume

\[
M_P^2 = M^2 \left\{ 1 + \frac{M^2}{32\pi^2 F^2} \log \left(\frac{M^2}{\Lambda^2_{\pi}}\right) + \frac{1}{2F^2} g_1^4(M^2) \right\}
\]

\[
F_P = F \left\{ 1 - \frac{M^2}{16\pi^2 F^2} \log \left(\frac{M^2}{\Lambda^2_F}\right) - \frac{1}{F^2} g_1^4(M^2) \right\}
\]

The finite volume corrections in \(M_P^2\) for the various masses are

\(\beta = 5.6\)

\(\{0\%, 0.2\%, 0.7\%, 2.1\%\}\)

\(\beta = 5.8\)

\(\{0\%, 0.6\%, 0.9\%, 1.3\%\}\)
Reference point defined to be

\[\left(\frac{M_P}{M_V} \right)^2 \bigg|_{m=m_{\text{ref}}} = \left(\frac{M_{K}^{\text{exp}}}{M_{K}^{\text{exp}}} \right)^2 = 0.30657 \]

If we fix \(M_{\text{ref}} = M_{K}^{\text{exp}} \) to fix the lattice spacing

\[
a^{-1} = 2.70(3) \text{ GeV} \quad \beta = 5.6
\]

\[
a^{-1} = 3.77(4) \text{ GeV} \quad \beta = 5.8
\]

If we use \(Z_A \) from RI-MOM D. Bećirević et al 05

\[
F_{\text{ref}} = 111(2) \quad \beta = 5.6
\]

\[
F_{\text{ref}} = 108(2) \quad \beta = 5.8
\]
A remarkable linear behavior is observed
A remarkable linear behavior is observed

...... and results from the two lattices are consistent
In QCD with two light flavors the mass of the light pseudoscalar meson shows a remarkable linearity in the quark mass.
In QCD with two light flavors the mass of the light pseudoscalar meson shows a remarkable linearity in the quark mass.
In QCD with two light flavors the mass of the light pseudoscalar meson shows a remarkable linearity in the quark mass.

The mass dependence is also compatible with the “experimental” curve.
Comparison with quenched data

\[
\frac{(M_p^2/m_q)}{(M_p^{2\text{ref}}/m_q^{\text{ref}})} \text{ vs } \frac{(m_q/m_q^{\text{ref}})}{\text{beta=5.6}}
\]

For quenched data thanks to: P. Hernández, C. Pena, J. Wennekers and H. Wittig
In QCD with two light flavors the decay constant of the light pseudoscalar meson shows a clear dependence on the quark mass.
In QCD with two light flavors the decay constant of the light pseudoscalar meson shows a clear dependence on the quark mass

and results from the two lattices are consistent
In QCD with two light flavors the decay constant of the light pseudoscalar meson shows a clear dependence on the quark mass.

The mass dependence is also compatible with the “experimental” curve.
ChPT fits for the pseudoscalar decay constant

The lightest three points are compatible with a linear behavior.
The lightest three points are compatible with a linear behavior.

. and also with the NLO ChPT fit function.

Light and precise points are needed for an accurate determination of F.
First clover run

<table>
<thead>
<tr>
<th>k</th>
<th>N_{trj}</th>
<th>N_{sep}</th>
<th>N_{conf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13550</td>
<td>5200</td>
<td>50</td>
<td>104</td>
</tr>
<tr>
<td>$V = 24^3 \times 48$</td>
<td>0.13590</td>
<td>4620</td>
<td>30</td>
</tr>
<tr>
<td>$\beta = 5.3$</td>
<td>0.13610</td>
<td>5070</td>
<td>30</td>
</tr>
<tr>
<td>$c_{sw} = 1.90952$</td>
<td>0.13620</td>
<td>1770</td>
<td>30</td>
</tr>
</tbody>
</table>

TBD
Conclusions

- Our experience for two flavor QCD shows that SAP is very stable in the ranges
 1. \(m \sim \frac{1}{4} m_s - m_s \)
 2. \(a \sim 0.050 - 0.075 \text{ fm} \)
 3. \(L \sim 1.75 \text{ fm} \)

- The production for two Wilson lattices completed. The first clover run is finishing

- Discretization effects in the quark mass dependence of \(M_P^2 \) and \(F_P \) are small

- The mass dependence of \(M_P^2 \) turns out to be very linear for \(M_P = 300 - 600 \text{ MeV} \)
 Data compatible with NLO ChPT + exp.

- \(F_P \) shows a clear quark mass dependence. Data compatible with NLO ChPT + exp.

- Precise points at light quark masses are necessary to extract the LECs reliably