Chiral fermions and their phenomenological applications I

Leonardo Giusti
CERN TH-Division

Centre de Physique Théorique, CNRS-Marseille
Outline

• Introduction
• Domain-wall-overlap fermions
• Exact chiral symmetry and Ward identities
• Non-perturbative renormalization
• Meson spectrum
• The chiral condensate
• Topological susceptibility and WV relation
• Kaon matrix elements
• Conclusions and outlook
Plenary talks at lattice conferences

• T. Blum '98
 “Domain wall fermions in vector gauge theories”

• F. Niedermayer '98
 “Exact chiral symmetry, topological charge and related topics”

• M. Lüscher '99
 “Chiral gauge theories on the lattice with exact gauge invariance”

• H. Neuberger '99
 “Chiral fermions on the lattice”

• P.M. Vranas '00
 “Domain wall fermions and applications”

• P. Hernández '01
 “Ginsparg-Wilson fermions: practical aspects and applications”

• Y. Kikukawa '01
 “Analytic progress on exact lattice chiral symmetry”

• C. Gattringer '02
 “Recent results using systematic parameterizations of Ginsparg-Wilson fermions”

• L. G. '02
 “Exact chiral symmetry on the lattice: QCD applications”

Selected reviews

• M. Lüscher '00
 “Chiral gauge theories revisited”

• H. Neuberger '01
 “Exact chiral symmetry on the lattice”
• In '82 Ginsparg and Wilson proposed the “mildest way” of breaking standard chiral symmetry on the lattice

\[
\{\gamma_5, D\} = \bar{a}D\gamma_5 D \iff \{\gamma_5, D^{-1}\} = \bar{a}\gamma_5
\]

• An exact symmetry at finite cut-off is implied (M. Lüscher '98)

\[
\delta q = \hat{\gamma}_5 q \quad \delta \bar{q} = \bar{q}\gamma_5
\]

\[
\hat{\gamma}_5 = \gamma_5(1 - \bar{a}D)
\]

where \(\hat{\gamma}_5^\dagger = \hat{\gamma}_5\), \(\hat{\gamma}_5^2 = 1\).

• The anomaly is recovered à la Fujikawa (M. Lüscher '98)

\[
a^4Q(x) = \frac{\bar{a}}{2a}\text{Tr}[\gamma_5 D(x,x)]
\]

\[
n_L - n_R = \text{index}(D) = a^4 \sum_x Q(x)
\]

(see also H. Neuberger '97, P. Hasenfratz et al. '98)

• After more than a decade, a Dirac operator that satisfies the GW relation, is local and leads to the correct continuum limit was found
Domain-wall-overlap fermions
(D. B. Kaplan '92, H. Neuberger '97)

- A five-dimensional fermion with a domain-wall mass term generates a 4D fermion with the two chiral components separated by a distance $N_s/2$ and with exponentially small overlap (Rubakov-Shaposhnikov '83, Callan-Harvey '85, Kaplan '92)

- Light 4D states interpolated by fermion fields on the walls

- In the $N_s \to \infty$ limit we expect a massless 4D fermion!
• The 5D domain-wall Dirac operator (Y. Shamir ’93)

\[D = \frac{1}{2} \left[\gamma_5 (\partial_s^* + \partial_s) - a_s \partial_s^* \partial_s \right] + X \]

where \(\partial_s^* \) and \(\partial_s \) are forward and backward derivatives

\[X = D_W - \frac{\rho}{a} , \quad 0 < \rho < 2 \]

• The 4D Wilson-Dirac operator is

\[D_W = \frac{1}{2} \left[\gamma_\mu (\nabla_\mu + \nabla^*_\mu) - a \nabla^*_\mu \nabla_\mu \right] \]

\[\nabla_\mu q(x) = \frac{1}{a} \left[U_\mu(x)q(x + a\hat{\mu}) - q(x) \right] \]

\[\nabla^*_\mu q(x) = \frac{1}{a} \left[q(x) - U^\dagger_\mu(x - a\hat{\mu})q(x - a\hat{\mu}) \right] \]

• The system is supplemented with open boundary conditions

\[P_+ q(0, x) = P_- q(a_s N_s + a_s, x) = 0 , \quad P_\pm = \frac{1}{2} (1 \pm \gamma_5) \]
We are studying QCD with many flavors mixed in a given way

We can integrate out the heavy flavors and remain with a four-dimensional effective action of the light boundary fields (R. Narayanan, H. Neuberger '92 '94; H. Neuberger '97)

\[
\bar{a}D_{N_s} = 1 + \gamma_5 \frac{(1 + \tilde{H})^{N_s} - (1 - \tilde{H})^{N_s}}{(1 + \tilde{H})^{N_s} + (1 - \tilde{H})^{N_s}}
\]

\[
\tilde{H} \equiv \gamma_5 \tilde{X}, \quad \tilde{X} = \frac{a_s X}{2 + a_s X}
\]

For \(N_s \to \infty\)

\[
\bar{a}D_{DW} = 1 + \frac{\tilde{X}}{\sqrt{\tilde{X}^\dagger \tilde{X}}}
\]

Neuberger’s operator is obtained in the limit

\[
\bar{a}D_N \equiv \lim_{a_s \to 0} \lim_{N_s \to \infty} \bar{a}D_{N_s} = 1 + \frac{X}{\sqrt{X^\dagger X}}
\]

Most remarkably both operators satisfy

\[
\{\gamma_5, D\} = \bar{a}D \gamma_5 D
\]

If the gauge field is sufficiently smooth, the operators are local (P. Hernández, K. Jansen and M. Lüscher '98)
Fixed-point Dirac operator

- An operator that satisfies the GW relation can be constructed iteratively with a RG blocking procedure from the continuum (P. Hasenfratz, F. Niedermayer '94 '98)

- In the simulations an approximate explicit solution D_{FP} of the fixed-point equations can be used

- For measurements where an exact chiral symmetry is crucial, the residual breaking can be removed by defining

$$D_{FP}^{ov} = 1 + \frac{X_{FP}}{\sqrt{X_{FP}^\dagger X_{FP}}}$$

(W. Bietenholz '99, P. Hasenfratz et al. '01)
Massive action

- The massive action is defined as

\[S_f = a^4 \sum_x \bar{\psi}(x) \left[(D + P_- M^\dagger \hat{P}_- + P_+ M \hat{P}_+) \psi \right](x) \]

- If we define

\[\hat{P}_\pm = \frac{1}{2} (1 \pm \gamma_5) \quad P_\pm = \frac{1}{2} (1 \pm \gamma_5) \]

and

\[\psi_{R,L} = \hat{P}_\pm \psi \quad \bar{\psi}_{R,L} = \bar{\psi} P_\mp \]

the \(U(N_f)_L \times U(N_f)_R \) transformations are defined as

\[
\begin{align*}
\psi_L & \rightarrow V_L \psi_L \\
\bar{\psi}_L & \rightarrow \bar{\psi}_L V_L^\dagger \\
\psi_R & \rightarrow V_R \psi_R \\
\bar{\psi}_R & \rightarrow \bar{\psi}_R V_R^\dagger
\end{align*}
\]

- The action is invariant if also

\[M \rightarrow V_L M V_R^\dagger \]

- The anomaly is recovered à la Fujikawa
• The exact chiral symmetry forbids operators of $d = 5$ in the action which is $O(a)$-improved

• Chiral symmetry forbids additive quark renormalization

• Bilinears with correct chiral properties are $O(a)$-improved

\[
O_{\alpha\beta}^\Gamma(x) = \bar{\psi}_\alpha(x) \Gamma \psi_\beta(x) \quad \tilde{\psi}_\beta(x) = \left[(1 - \frac{a}{2} D) \psi_\beta \right](x)
\]

• Apparently no simple transformation of O^Γ under CP (M. Lüscher ’98, P. Hasenfratz ’01, K. Fujikawa et al. ’02)

• In correlations of operators at non-zero physical distance

\[
O_{\alpha\beta}^\Gamma(x) = \frac{1}{(1 - \frac{a}{2} m_\beta)} \bar{\psi}_\alpha(x) \Gamma \psi_\beta(x)
\]

and therefore under CP (L.G. et al. in preparation)

\[
O_{\alpha\beta}^\Gamma(x) \xrightarrow{\text{CP}} \frac{1 - \frac{a}{2} m_\alpha}{1 - \frac{a}{2} m_\beta} O_{\beta\alpha}^\Gamma(\tilde{x})
\]

• The generalization to four-fermion operators is straightforward
Ward identities and quark masses

- By performing a non-singlet local rotation \([\epsilon_{V,A} = \epsilon_{V,A}(x)\delta_{xy}]\)

\[-i\delta_{V,A}\psi = \left[\hat{P}_R\epsilon_{V,A}\hat{P}_R \pm \hat{P}_L\epsilon_{V,A}\hat{P}_L\right]\psi\]

\[i\delta_{V,A}\bar{\psi} = \bar{\psi}\left[P_L\epsilon_{V,A} \pm P_R\epsilon_{V,A}\right]\]

exact vector and axial WIs are obtained

\[\langle \partial_\mu^* V_\mu(x)\mathcal{O} \rangle = (m_1 - m_2)\langle S(x)\mathcal{O} \rangle + \text{CT}\]

\[\langle \partial_\mu^* A_\mu(x)\mathcal{O} \rangle = (m_1 + m_2)\langle P(x)\mathcal{O} \rangle + \text{CT}\]
• By Fourier transforming at zero momentum transfer $q = 0$, choosing $\mathcal{O}(x_\alpha, x_\beta) = \tilde{\psi}_\alpha(x_\alpha)\bar{\psi}_\beta(x_\beta)$, defining

$$S(p) = \sum_x e^{-ipx} \langle \tilde{\psi}(x)\bar{\psi}(0) \rangle$$

$$G_O(p) = \sum_{x_1, x_2} e^{-ip(x_1-x_2)} \langle \tilde{\psi}(x_1)\mathcal{O}(0)\bar{\psi}(x_2) \rangle$$

and

$$\Lambda_O(p) = S^{-1}(p)G_O(p)S^{-1}(p)$$

the following identity can be obtained

$$(m_1 + m_2)\text{Tr} \left[\gamma_5 \Lambda_P(p, m_1, m_2) \right] = \text{Tr} \left[S^{-1}(p, m_1) + S^{-1}(p, m_2) \right]$$

• At variance with the Wilson case, the very same definition of the quark mass appears in the vector and axial WIs and in the quark propagator
Conserved axial current

(P.H. Ginsparg, K. G. Wilson '82; Y. Kikukawa, A. Yamada '99)

• Under a non-singlet local chiral rotation \((\epsilon = e^a(x)T^a\delta_{xy})\)

\[-i\delta_A\psi = (\hat{P}_R\epsilon\hat{P}_R - \hat{P}_L\epsilon\hat{P}_L)\psi \quad -i\delta_A\bar{\psi} = \bar{\psi}\gamma_5\epsilon\]

\[-i\delta_A S = -\sum_x \epsilon(x)\partial^*_\mu A_\mu(x) = \sum_x \partial_\mu\epsilon(x)A_\mu(x)\]

• By extending the gauge group \(SU(N_c) \rightarrow SU(N_c) \times U(1)\) and performing a \(U(1)\) gauge rotation

\[U_\mu(x) \rightarrow U^{(\alpha)}_\mu = e^{i\alpha_\mu(x)}U_\mu(x) = e^{i\epsilon(x)}U_\mu(x)e^{-i\epsilon(x+\hat{\mu})}\]

we can define the kernel

\[K_\mu = -i\frac{\delta D(U^{(\alpha)}_\mu)}{\delta \alpha_\mu(x)} \bigg|_{\alpha=0}\]

and the corresponding conserved axial current

\[A^a_\mu(x) = \bar{\psi}\left(P_LK_\mu(x)\hat{P}_R - P_RK_\mu(x)\hat{P}_L\right)T^a\psi\]

• In this form it can be implemented numerically (P. Hasenfratz et al. '02)

• For CC correlations (and generalizations) the propagator from any point to any point is required (L.G. et al. in prep.)
Singlet axial Ward identities

- For a given string of renormalized fundamental fields \hat{O}

\[
\langle \partial^*_\mu A^0_\mu(x) \hat{O} \rangle = 2N_f \langle Q(x) \hat{O} \rangle + \langle \delta^x_A \hat{O} \rangle \\
2N_f \int d^4 x \langle Q(x) \hat{O} \rangle + \langle \delta_A \hat{O} \rangle = 0
\]

- As a consequence, properly renormalized operators are

\[
\hat{Q}(x) = \frac{1}{2} \text{Tr}[\gamma_5 D(x, x)] - \frac{Z}{2N_f} \partial^*_\mu A^0_\mu(x) \\
\hat{A}^0_\mu(x) = (1 - Z) A^0_\mu(x)
\]

- The renormalized AWIs read

\[
\langle \partial^*_\mu \hat{A}^0_\mu(x) \hat{O} \rangle = 2N_f \langle \hat{Q}(x) \hat{O} \rangle + \langle \delta^x_A \hat{O} \rangle
\]
Exact chiral symmetry: some advantages

• The Dirac operator has an index at finite cut-off:
 ▶ A natural definition for $Q(x)$
 ▶ Identification of the topological charge

• Very light quark masses can be reached:
 ▶ No exceptional configurations

• No mixing among operators of different chirality:
 ▶ No additive quark renormalization
 ▶ Simplified mixing for composite operators
 ▶ $O(a)$ improvement straightforward
“Local” axial current

- The “local” axial current

\[A_\mu(x) = \bar{\psi}_\alpha(x) \gamma_\mu \gamma_5 \psi_\beta(x) \]

is not conserved but has the correct transformation properties

- On shell

\[Z_A \langle \nabla_\mu A_\mu(x) P(0) \rangle = (m_1 + m_2) \langle P(x) P(0) \rangle + O(a^2) \]

and \(Z_A \) can be extracted from the ratio of correlation functions

(L.G., C. Hoelbling, C. Rebbi ’01; S.J. Dong et al. ’01, BGR Coll. ’02)

![Graph](image)

- For standard overlap \((\beta = 6.0, \rho = 1.4)\), \(Z_A = 1.55(4) \) to be compared with PT \(Z_A^{PT} = 1.15 - 1.35 \)
RI/MOM non-perturbative renormalization
(G. Martinelli et al. ’95)

• Extensive applications for DW (T. Blum et al. ’99-’01)
• First applications for overlap (L.G., C. Hoelbling, C. Rebbi ’01)

\[Z^{-1}_{\mathcal{O}}(\mu a)Z_q(\mu a) = \lim_{m \to 0} \text{Tr} \left[\mathcal{P} \mathcal{A} \mathcal{A}(p, m) \right]_{p^2=\mu^2} \]

• A RI/MOM renormalization condition is fixed on amputated off-shell Green’s functions computed in the Landau gauge

\[Z_S(a\mu) = Z_A \lim_{m=0} \frac{\text{Tr}[\mathcal{P} \mathcal{A} \mathcal{A}(p, m)]}{\text{Tr}[\mathcal{P} \mathcal{S} \mathcal{A}(p, m)]} \bigg|_{p^2=\mu^2} \]

• For the scalar density

• For bilinears there is a “renormalization window”
• Matching with $\overline{\text{MS}}$ needs continuum PT only
RI/MOM: four-quark operators
(A. Donini et al. '99)

• First application for overlap (see N. Garron, C. Hoelbling talks)

Preliminary!

• For the $\Delta S = 2$ Standard Model Operator

$$O_1 = [\bar{s}\gamma_\mu(1-\gamma_5)d][\bar{s}\gamma_\mu(1-\gamma_5)d]$$

the renormalization constant is given by

$$Z_{BK}(a\mu) = \frac{Z_{11}(a\mu)}{Z_A^2} = \lim_{m=0} \left. \frac{\text{Tr}^2[P_A\Lambda_A(p,m)]}{\text{Tr}[P_1\Lambda_1(p,m)]} \right|_{p^2=\mu^2}$$

• Also for Z_{BK}^{RI} there is a “renormalization window”
Matching to continuum Wilson data
(P. Hernández et al. ’01)

• Fixing the RGI quark mass to the continuum extrapolated Wilson value (S. Capitani et al. ’98, J. Garden et al. ’99)

\[
M^{\text{RGI}}_W \bigg|_{(r_0 M_P)^2 = x_{\text{ref}}} = \frac{1}{Z^{\text{RGI}}_S(a)m_{\text{ov}}(a)} \bigg|_{(r_0 M_P)^2 = x_{\text{ref}}}
\]

\[
\langle 0 | P^{\text{RGI}}_W | \pi \rangle_{(r_0 M_P)^2 = x_{\text{ref}}} = Z^{\text{RGI}}_S(a) \langle 0 | P_{\text{ov}}(a) | \pi \rangle_{(r_0 M_P)^2 = x_{\text{ref}}}
\]

• Warning: the prediction for a low energy hadronic quantity is lost in the renormalization procedure

| \(Z^{\text{MS}}_S(2\text{GeV})\) Overlap, \(\beta = 6.0, \rho = 1.4\) |
|------------------|-----------------|------------------|
| PT | RI/MOM | Wilson |
| 1.1-1.3 | 1.41(6) | 1.43(11) |
Overlap operator: M^2_{π} vs. m

\[
(r_0 M_P)^2 \bigg|_{m_{ref}} = 2(r_0 M_K)^2, \quad M_K = 495 \text{ MeV}, \quad r_0 = 0.5 \text{ fm}
\]

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>a (fm)</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. G. et al. '01</td>
<td>~ 0.093</td>
<td>$16^3 \times 32$</td>
</tr>
<tr>
<td>P. Hernández et al. '01</td>
<td>~ 0.093</td>
<td>$14^3 \times 24$</td>
</tr>
<tr>
<td>P. Hernández et al. '01</td>
<td>~ 0.12</td>
<td>$10^3 \times 24$</td>
</tr>
<tr>
<td>S. J. Dong et al. '01</td>
<td>~ 0.14</td>
<td>$20^3 \times 20$</td>
</tr>
<tr>
<td>BGR-Coll. '02</td>
<td>~ 0.16</td>
<td>$12^3 \times 24$</td>
</tr>
<tr>
<td>Chiu-Hsieh '02</td>
<td>~ 0.14</td>
<td>$8^3 \times 24$</td>
</tr>
</tbody>
</table>

- Good control over chiral symmetry!
Fixed-point and chirally-improved operators: M^2_π vss m
Domain-wall fermions with DBW2 action: M_π^2 vs. m

- With the DBW2 action improved m_{res}

- A potential difficulty: samples with proper distribution for Q

- Other properties need to be investigated (scaling, etc.)
Comparison with NP-improved Wilson data

\[(r_0 M_P)^2 \bigg|^{m_{\text{ref}}} = 2(r_0 M_K)^2, \quad M_K = 495 \text{ MeV} \]
\[r_0 = 0.5 \text{ fm} \]

\[\frac{2M_P^2}{2m} = \frac{\Sigma}{F^2} \left[1 - \frac{m_0^2}{3(4\pi F)^2} \left(1 + \log \left(\frac{M^2}{\mu^2} \right) \right) \right. \]
\[\left. + \frac{\alpha M^2}{3(4\pi F)^2} \left(2 \log \left(\frac{M^2}{\mu^2} \right) + 1 \right) + \left(2 \alpha_8 - \alpha_5 \right) \frac{M^2}{(4\pi F)^2} \right] \]

- Linear behaviour for \(M_P^2 \) in the range \(500 \lesssim M_P \lesssim 800 \text{ MeV} \)
Mesons with non-degenerate quarks

- For the ratio (C. W. Bernard et al. ’92, S. Aoki at al. ’02)

\[
y = \frac{4m_1m_2}{(m_1 + m_2)^2} \frac{M_P^4(m_1, m_2)}{M_P^2(m_1, m_1)M_P^2(m_2, m_2)}
\]

\(\chi PT\) expectations are (\(\delta = m_0^2 / 3(4\pi F)^2\))

\[
y = 1 + \delta x + \frac{\alpha}{3(4\pi F)^2} \frac{2\Sigma}{F^2} z + O(m_1^2, m_2^2)
\]

where

\[
x = 2 + \frac{m_1 + m_2}{m_1 - m_2} \log \left(\frac{m_2}{m_1}\right)
\]

\[
z = \left(\frac{2m_1m_2}{m_2 - m_1} \log \left(\frac{m_2}{m_1}\right) - m_1 - m_2\right)
\]

- The explicit dependence on \(\mu_\chi\) is removed

- This ratio has been reanalyzed from the BGR coll. to extract \(\delta\)
BGR collaboration: quenched chiral logs

More studies to properly assess the systematics

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>Action</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-PACS '98</td>
<td>Wilson</td>
<td>0.10(2)</td>
</tr>
<tr>
<td>Bardeen et al. '00</td>
<td>modified Wilson</td>
<td>0.065(13)</td>
</tr>
<tr>
<td>Kentucky '01</td>
<td>overlap</td>
<td>0.23 (-) 0.48</td>
</tr>
<tr>
<td>RBC '01</td>
<td>DW</td>
<td>0.05(2)</td>
</tr>
<tr>
<td>BGR-Coll. '02</td>
<td>Fixed-Point</td>
<td>0.17(2)</td>
</tr>
<tr>
<td>BGR-Coll. '02</td>
<td>Chirally-Improved</td>
<td>0.18(4)</td>
</tr>
<tr>
<td>Kentucky '02</td>
<td>overlap</td>
<td>0.248(12)</td>
</tr>
<tr>
<td>Chiu-Hsieh</td>
<td>overlap</td>
<td>0.203(14)</td>
</tr>
</tbody>
</table>
Light quark masses
(L. G., C. Hoelbling, C. Rebbi)

- On the plane \([(a f_P), (a M_P)^2] \), \(f_P / M_P = f_K^{\exp} / M_K^{\exp} \)

\[
aM_K = 0.216(8) \quad a f_K = 0.0698(26)
\]

- From \([(a M_P)^2, (am)] \) with \(a_f^{-1} = 2.29(9) \)

\[
(m_s + \hat{m})^{\text{RI}}(2 \text{GeV}) = 120 \pm 7 \pm 21 \text{ MeV}
\]

- By using \(\chi \)PT and \(N^2\text{LO} \) PT

\[
m_s^{\text{MS}}(2\text{GeV}) = 102 \pm 6 \pm 18 \text{ MeV}
\]
Conclusions

- **Exact chiral symmetry** on the lattice at finite cut-off

- **Domain-wall-overlap**: explicit *chirally symmetric regularization*

- Quenched **large scale numerical simulations** are feasible
 Regime of quark masses not reachable with Wilson fermions

- First phenomenological computations performed
 Results indicate small discretization errors

· · · · · More on Friday !!